AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The structure–activity relationships of Rh/CeO2–ZrO2 catalysts based on Rh metal size effect in the three-way catalytic reactions

Dongming Chen1,2,3Weixin Zhao1,2Zihao Xu1,2,3Zheng Zhao1,2Juanyu Yang1,2,3Yongke Hou1,2Yongqi Zhang1,2Zongyu Feng1,2,3Meisheng Cui1,2,3( )Xiaowei Huang1,2,3( )
National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China
Grirem Hi-Tech Co., Ltd., Sanhe 065201, China
General Research Institute for Nonferrous Metals, Beijing 100088, China
Show Author Information

Graphical Abstract

This work showed that the Rh nanoparticle catalyst, with an average size of 1.9 nm, exhibited superior three-way catalytic performance compared to the single-atom catalyst and other catalysts, and operando spectroscopy confirms the key role of metallic Rh sites on Rh nanoparticles.

Abstract

With the continuous tightening of automotive emission regulations and the increasing promotion of energy-efficient hybrid vehicles, new challenges have arisen for the low-temperature performance of three-way catalysts (TWCs). To guide the design of next-generation TWCs, it is essential to further develop our understanding of the relationships between microstructure and catalytic performance. Here, Rh/CeO2–ZrO2 catalysts were synthesized with different Rh metal dispersion by using a combination of the wet impregnation method and reduction treatment. These catalysts included Rh single-atom catalysts, cluster catalysts, and nanoparticle catalysts. The results showed that the Rh nanoparticle catalyst, with an average size of 1.9 nm, exhibited superior three-way catalytic performance compared to the other catalysts. Based on the catalytic activity in a series of simple reaction atmospheres such as CO + O2, NO + CO, and hydrocarbons (HCs) + O2 and operando infrared spectroscopy, we found that metallic Rh sites on Rh nanoparticles are the key factor responsible for the low-temperature catalytic performance.

Electronic Supplementary Material

Download File(s)
6643_ESM.pdf (2.3 MB)

References

[1]

Twigg, M. V. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B: Environ. 2007, 70, 2–15.

[2]

Gandhi, H. S.; Graham, G. W.; McCabe, R. W. Automotive exhaust catalysis. J. Catal. 2003, 216, 433–442.

[3]

Lambert, C. K. Current state of the art and future needs for automotive exhaust catalysis. Nat. Catal. 2019, 2, 554–557.

[4]

Farrauto, R. J.; Deeba, M.; Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2019, 2, 603–613.

[5]

Nagao, Y.; Nakahara, Y.; Sato, T.; Iwakura, H.; Takeshita, S.; Minami, S.; Yoshida, H.; Machida, M. Rh/ZrP2O7 as an efficient automotive catalyst for NO x reduction under slightly lean conditions. ACS Catal. 2015, 5, 1986–1994.

[6]

Shelef, M.; Graham, G. W. Why rhodium in automotive three-way catalysts. Catal. Rev. 1994, 36, 433–457.

[7]

Kummer, J. T. Use of noble metals in automobile exhaust catalysts. J. Phys. Chem. 1986, 90, 4747–4752.

[8]

DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.

[9]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[10]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[11]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[12]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[13]

Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

[14]

Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angew. Chem. 2020, 132, 20872–20877.

[15]

Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

[16]

Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.

[17]

Han, B.; Li, T. B.; Zhang, J. Y.; Zeng, C. B.; Matsumoto, H.; Su, Y.; Qiao, B. T.; Zhang, T. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation. Chem. Commun. 2020, 56, 4870–4873.

[18]

Marino, S.; Wei, L.; Cortes-Reyes, M.; Cheng, Y. S.; Laing, P.; Cavataio, G.; Paolucci, C.; Epling, W. Rhodium catalyst structural changes during, and their impacts on the kinetics of, CO oxidation. JACS Au 2023, 3, 459–467.

[19]

Srinivasan, A.; Depcik, C. Review of chemical reactions in the NO reduction by CO on rhodium/alumina catalysts. Catal. Rev. 2010, 52, 462–493.

[20]

Asokan, C.; Yang, Y.; Dang, A. L.; Getsoian, A. B.; Christopher, P. Low-temperature ammonia production during NO reduction by CO is due to atomically dispersed rhodium active sites. ACS Catal. 2020, 10, 5217–5222.

[21]

Hoffman, A. J.; Asokan, C.; Gadinas, N.; Kravchenko, P.; Getsoian, A. B.; Christopher, P.; Hibbitts, D. Theoretical and experimental characterization of adsorbed CO and NO on γ-Al2O3-supported Rh nanoparticles. J. Phys. Chem. C 2021, 125, 19733–19755.

[22]

Yoo, C. J.; Getsoian, A.; Bhan, A. NH3 formation pathways from NO reduction by CO in the presence of water over Rh/Al2O3. Appl. Catal. B: Environ. 2021, 286, 119893.

[23]

Newton, M. A.; Belver-Coldeira, C.; Martínez-Arias, A.; Fernández-García, M. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat. Mater. 2007, 6, 528–532.

[24]

Xie, H. J.; Ren, M.; Lei, Q. F.; Fang, W. J.; Ying, F. Explore the catalytic reaction mechanism in the reduction of NO by CO on the Rh7+ cluster: A quantum chemical study. J. Phys. Chem. C 2012, 116, 7776–7781.

[25]

Zhang, S. R.; Tang, Y.; Nguyen, L.; Zhao, Y. F.; Wu, Z. L.; Goh, T. W.; Liu, J. J.; Li, Y. Y.; Zhu, T.; Huang, W. Y. et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS Catal. 2018, 8, 110–121.

[26]

Haneda, M.; Tomida, Y.; Takahashi, T.; Azuma, Y.; Fujimoto, T. Three-way catalytic performance and change in the valence state of Rh in Y- and Pr-doped Rh/ZrO2 under lean/rich perturbation conditions. Catal. Commun. 2017, 90, 1–4.

[27]

Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

[28]

Gabelnick, A. M.; Capitano, A. T.; Kane, S. M.; Gland, J. L.; Fischer, D. A. Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface. J. Am. Chem. Soc. 2000, 122, 143–149.

[29]

Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

[30]

Muravev, V.; Simons, J. F. M.; Parastaev, A.; Verheijen, M. A.; Struijs, J. J. C.; Kosinov, N.; Hensen, E. J. M. Operando spectroscopy unveils the catalytic role of different palladium oxidation states in CO oxidation on Pd/CeO2 catalysts. Angew. Chem., Int. Ed. 2022, 61, e202200434.

[31]

Matsumura, Y.; Koda, Y.; Yamada, H.; Shigetsu, M.; Takami, A.; Ishimoto, T.; Kai, H. Experimental and computational studies of CO and NO adsorption properties on Rh-based single nanosized catalysts. J. Phys. Chem. C 2020, 124, 2953–2960.

[32]

Pekridis, G.; Kaklidis, N.; Komvokis, V.; Athanasiou, C.; Konsolakis, M.; Yentekakis, I. V.; Marnellos, G. E. Surface and catalytic elucidation of Rh/γ-Al2O3 catalysts during NO reduction by C3H8 in the presence of excess O2, H2O, and SO2. J. Phys. Chem. A 2010, 114, 3969–3980.

[33]

Chen, Y. S.; Deng, J.; Fan, J.; Jiao, Y.; Wang, J. L.; Chen, Y. Q. Key role of NO + C3H8 reaction for the elimination of NO in automobile exhaust by three-way catalyst. Environ. Sci. Pollut. Res. 2019, 26, 26071–26081.

[34]

Gänzler, A. M.; Casapu, M.; Vernoux, P.; Loridant, S.; Cadete Santos Aires, F. J.; Epicier, T.; Betz, B.; Hoyer, R.; Grunwaldt, J. D. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem., Int. Ed. 2017, 56, 13078–13082.

[35]

Chafik, T.; Kondarides, D. I.; Verykios, X. E. Catalytic reduction of NO by CO over rhodium catalysts: 1. adsorption and displacement characteristics investigated by in situ FTIR and transient-MS techniques. J. Catal. 2000, 190, 446–459.

[36]

Wu, D. F.; Liu, S. X.; Zhong, M. Q.; Zhao, J. F.; Du, C. C.; Yang, Y. L.; Sun, Y. F.; Lin, J. D.; Wan, S. L.; Wang, S. et al. Nature and dynamic evolution of Rh single atoms trapped by CeO2 in CO hydrogenation. ACS Catal. 2022, 12, 12253–12267.

[37]

Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605–608.

[38]

Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084.

[39]

Zhang, B.; Asakura, H.; Yan, N. Atomically dispersed rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Ind. Eng. Chem. Res. 2017, 56, 3578–3587.

[40]

Weng-Sieh, Z.; Gronsky, R.; Bell, A. T. Microstructural evolution of γ-alumina-supported Rh upon aging in air. J. Catal. 1997, 170, 62–74.

[41]

Gayen, A.; Priolkar, K. R.; Sarode, P. R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S. Ce1− x Rh x O2− δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater. 2004, 16, 2317–2328.

[42]

Gänzler, A. M.; Casapu, M.; Maurer, F.; Störmer, H.; Gerthsen, D.; Ferré, G.; Vernoux, P.; Bornmann, B.; Frahm, R.; Murzin, V. et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal. 2018, 8, 4800–4811.

[43]

Lykhach, Y.; Kozlov, S. M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J. et al. Counting electrons on supported nanoparticles. Nat. Mater. 2016, 15, 284–288.

[44]

Yang, A. C.; Choksi, T.; Streibel, V.; Aljama, H.; Wrasman, C. J.; Roling, L. T.; Goodman, E. D.; Thomas, D.; Bare, S. R.; Sánchez-Carrera, R. S. et al. Revealing the structure of a catalytic combustion active-site ensemble combining uniform nanocrystal catalysts and theory insights. Proc. Natl. Acad. Sci. USA 2020, 117, 14721–14729.

[45]

Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.

[46]

Ligthart, D. A. J. M.; van Santen, R. A.; Hensen, E. J. M. Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts. Angew. Chem., Int. Ed. 2011, 50, 5306–5310.

[47]

Farber, R. G.; Turano, M. E.; Killelea, D. R. Identification of surface sites for low-temperature heterogeneously catalyzed CO oxidation on Rh(111). ACS Catal. 2018, 8, 11483–11490.

[48]

Xie, S. H.; Liu, L. P.; Lu, Y.; Wang, C. Y.; Cao, S. F.; Diao, W. J.; Deng, J. G.; Tan, W.; Ma, L.; Ehrlich, S. N. et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144, 21255–21266.

[49]

Jiang, D.; Wan, G.; García-Vargas, C. E.; Li, L. Z.; Pereira-Hernández, X. I.; Wang, C. M.; Wang, Y. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS Catal. 2020, 10, 11356–11364.

[50]

Allian, A. D.; Takanabe, K.; Fujdala, K. L.; Hao, X. H.; Truex, T. J.; Cai, J.; Buda, C.; Neurock, M.; Iglesia, E. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc 2011, 133, 4498–4517.

[51]

Taha, R.; Martin, D.; Kacimi, S.; Duprez, D. Exchange and oxidation of C16O on 18O-predosed Rh-Al2O3 and Rh-CeO2 catalysts. Catal. Today 1996, 29, 89–92.

[52]

Guan, H. L.; Lin, J.; Qiao, B. T.; Yang, X. F.; Li, L.; Miao, S.; Liu, J. Y.; Wang, A. Q.; Wang, X. D.; Zhang, T. Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew. Chem. 2016, 128, 2870–2874.

[53]

Zhang, L.; Spezzati, G.; Muravev, V.; Verheijen, M. A.; Zijlstra, B.; Filot, I. A. W.; Su, Y. Q.; Chang, M. W.; Hensen, E. J. M. Improved Pd/CeO2 catalysts for low-temperature NO reduction: Activation of CeO2 lattice oxygen by Fe doping. ACS Catal. 2021, 11, 5614–5627.

[54]

Li, Y. J.; Sundermann, A.; Gerlach, O.; Low, K. B.; Zhang, C. C.; Zheng, X. L.; Zhu, H. Y.; Axnanda, S. Catalytic decomposition of N2O on supported Rh catalysts. Catal. Today 2020, 355, 608–619.

[55]

Fernández, E.; Liu, L. C.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 2019, 9, 11530–11541.

[56]

Liang, J.; Wang, H. P.; Spicer, L. D. FT-IR study of nitric oxide chemisorbed on rhodium/alumina. J. Phys. Chem. 1985, 89, 5840–5845.

[57]

Solymosi, F.; Sárkány, J. An infrared study of the surface interaction between NO and CO on Rh/Al2O3 catalyst. Appl. Surf. Sci. 1979, 3, 68–82.

[58]

Srinivas, G.; Chuang, S. S. C.; Debnath, S. An in situ infrared study of the reactivity of adsorbed NO and CO on Rh catalysts. J. Catal. 1994, 148, 748–758.

[59]

Hecker, W. C.; Bell, A. T. Infrared observations of Rh-NCO and Si-NCO species formed during the reduction of NO by CO over silica-supported rhodium. J. Catal. 1984, 85, 389–397.

[60]

Solymosi, F.; Berkó, A.; Tarnóczi, T. I. Effects of preadsorbed oxygen on the formation and decomposition of NCO on Rh(111) surfaces. Appl. Surf. Sci. 1984, 18, 233–245.

Nano Research
Pages 6870-6878
Cite this article:
Chen D, Zhao W, Xu Z, et al. The structure–activity relationships of Rh/CeO2–ZrO2 catalysts based on Rh metal size effect in the three-way catalytic reactions. Nano Research, 2024, 17(8): 6870-6878. https://doi.org/10.1007/s12274-024-6643-0
Topics:

668

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 January 2024
Revised: 09 March 2024
Accepted: 21 March 2024
Published: 27 June 2024
© Tsinghua University Press 2024
Return