AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Flagship Review

A review of ultrafast laser micro/nano fabrication: Material processing, surface/interface controlling, and devices fabrication

Heng Guo§Jiawang Xie§Guangzhi He§Dezhi ZhuMing QiaoJianfeng Yan( )Jiachen YuJiaqun LiYuzhi ZhaoMa LuoHaoze Han
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

§ Heng Guo, Jiawang Xie, and Guangzhi He contributed equally to this work.

Show Author Information

Graphical Abstract

This paper reviews the research progress of ultrafast laser micro/nano fabrication in the areas of material processing, surface/interface controlling, and micro functional devices fabrication.

Abstract

Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology, biotechnology, energy science, and photonics due to its controllable processing precision, diverse processing capabilities, and broad material adaptability. The processing abilities and applications of the ultrafast laser still need more exploration. In the field of material processing, controlling the atomic scale structure in nanomaterials is challenging. Complex effects exist in ultrafast laser surface/interface processing, making it difficult to modulate the nanostructure and properties of the surface/interface as required. In the ultrafast laser fabrication of micro functional devices, the processing ability needs to be improved. Here, we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing, surface/interface controlling, and micro functional devices fabrication. Several useful ultrafast laser processing methods and applications in these areas are introduced. With various processing effects and abilities, the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.

References

[1]

Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 2016, 5, e16133.

[2]

Chichkov, B. N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115.

[3]

Rethfeld, B.; Sokolowski-Tinten, K.; von der Linde, D.; Anisimov, S. I. Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A 2004, 79, 767–769.

[4]

Jiang, L.; Wang, A. D.; Li, B.; Cui, T. H.; Lu, Y. F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci. Appl. 2018, 7, 17134.

[5]

Rethfeld, B.; Ivanov, D. S.; Garcia, M. E.; Anisimov, S. I. Modelling ultrafast laser ablation. J. Phys. D: Appl. Phys. 2017, 50, 193001.

[6]

Qiao, M.; Yan, J. F.; Qu, L. T.; Zhao, B. Q.; Yin, J. G.; Cui, T. H.; Jiang, L. Femtosecond laser induced phase transformation of TiO2 with exposed reactive facets for improved photoelectrochemistry performance. ACS Appl. Mater. Interfaces 2020, 12, 41250–41258.

[7]

Qiao, M.; Wang, H. M.; Lu, H. J.; Li, S.; Yan, J. F.; Qu, L. T.; Zhang, Y. Y.; Jiang, L.; Lu, Y. F. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser. Sci. China Mater. 2020, 63, 1300–1309.

[8]

Qiao, M.; Yan, J. F.; Gao, B. Ablation of TiO2 surface with a double-pulse femtosecond laser. Opt. Commun. 2019, 441, 49–54.

[9]

Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

[10]

Han, R. C.; Zhao, M.; Wang, Z. W.; Liu, H. L.; Zhu, S. C.; Huang, L.; Wang, Y.; Wang, L. J.; Hong, Y. K.; Sha, Y. L. et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020, 14, 9532–9544.

[11]

Papadopoulos, A.; Skoulas, E.; Mimidis, A.; Perrakis, G.; Kenanakis, G.; Tsibidis, G. D.; Stratakis, E. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring. Adv. Mater. 2019, 31, 1901123.

[12]

Li, X. Y.; Zhou, X.; Lu, K. Rapid heating induced ultrahigh stability of nanograined copper. Sci. Adv. 2020, 6, eaaz8003.

[13]

Yan, J. F.; Lindo, A.; Schwaiger, R.; Hodge, A. M. Sliding wear behavior of fully nanotwinned Cu alloys. Friction 2019, 7, 260–267.

[14]

Li, Z. Z.; Wang, L.; Fan, H.; Yu, Y. H.; Chen, Q. D.; Juodkazis, S.; Sun, H. B. O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 2020, 9, 41.

[15]

Tan, D. Z.; Zhang, B.; Qiu, J. R. Ultrafast laser direct writing in glass: Thermal accumulation engineering and applications. Laser Photon. Rev. 2021, 15, 2000455.

[16]

Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871.

[17]

González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Alcolea Palafox, M. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.

[18]

Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.

[19]

Yan, J. F.; Zou, G. S.; Wu, A. P.; Ren, J. L.; Yan, J. C.; Hu, A. M.; Zhou, Y. Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 2012, 66, 582–585.

[20]

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

[21]

Fang, L. L.; Liu, D. L.; Wang, Y. L.; Li, Y. J.; Song, L.; Gong, M.; Li, Y.; Deng, Z. X. Nanosecond-laser-based charge transfer plasmon engineering of solution-assembled nanodimers. Nano Lett. 2018, 18, 7014–7020.

[22]

Hashimoto, S.; Werner, D.; Uwada, T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 28–54.

[23]

Yan, J. F.; Zhu, D. Z.; Xie, J. W.; Shao, Y.; Xiao, W. Light tailoring of internal atomic structure of gold nanorods. Small 2020, 16, 2001101.

[24]

Takami, A.; Kurita, H.; Koda, S. Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 1999, 103, 1226–1232.

[25]

Liu, S.; Pan, X. T.; Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. 2020, 132, 5943–5953.

[26]

Mei, L. Q.; Zhu, S.; Yin, W. Y.; Chen, C. Y.; Nie, G. J.; Gu, Z. J.; Zhao, Y. L. Two-dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives. Theranostics 2020, 10, 757–781.

[27]

Wang, G. D.; Baker-Murray, A. A.; Blau, W. J. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photon. Rev. 2019, 13, 1800282.

[28]

Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

[29]

Jiang, T.; Yin, K.; Wang, C.; You, J.; Ouyang, H.; Miao, R. L.; Zhang, C. X.; Wei, K.; Li, H.; Chen, H. T. et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect. Photon. Res. 2020, 8, 78–90.

[30]

Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

[31]

Zhu, D. Z.; Yan, J. F.; Xie, J. W. Reshaping enhancement of gold nanorods by femtosecond double-pulse laser. Opt. Lett. 2020, 45, 1758–1761.

[32]

Xie, J. W.; Yan, J. F.; Zhu, D. Z. Atomic simulation of irradiation of Cu film using femtosecond laser with different pulse durations. J. Laser Appl. 2020, 32, 022016.

[33]

Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. Bimodal size distribution of gold nanoparticles under picosecond laser pulses. J. Phys. Chem. B 2005, 109, 9404–9410.

[34]

Penilla, E.; Devia-Cruz, L.; Wieg, A. T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J. E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808.

[35]

Plech, A.; Leiderer, P.; Boneberg, J. Femtosecond laser near field ablation. Laser Photon. Rev. 2009, 3, 435–451.

[36]

Voss, J. M.; Olshin, P. K.; Charbonnier, R.; Drabbels, M.; Lorenz, U. J. In situ observation of Coulomb fission of individual plasmonic nanoparticles. ACS Nano 2019, 13, 12445–12451

[37]

Muto, H.; Miyajima, K.; Mafune, F. Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation. J. Phys. Chem. C 2008, 112, 5810–5815.

[38]

Zhu, D. Z.; Yan, J. F.; Xie, J. W.; Liang, Z. W.; Bai, H. L. Ultrafast laser-induced atomic structure transformation of Au nanoparticles with improved surface activity. ACS nano 2021, 15, 13140–13147.

[39]

Baffou, G.; Quidant, R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 2013, 7, 171–187.

[40]

Zhu, D. Z.; Yan, J. F.; Xie, J. W.; He, G. Z. Atomic-level ablation of Au@Ag NRs using ultrafast laser excitation. Nanoscale 2021, 13, 17350–17358.

[41]

Ihm, Y.; Cho, D. H.; Sung, D.; Nam, D.; Jung, C.; Sato, T.; Kim, S.; Park, J.; Kim, S.; Gallagher-Jones, M. et al. Direct observation of picosecond melting and disintegration of metallic nanoparticles. Nat. Commun. 2019, 10, 2411.

[42]

Schust, J.; Mangold, F.; Sterl, F.; Metz, N.; Schumacher, T.; Lippitz, M.; Hentschel, M.; Giessen, H. Spatially resolved nonlinear plasmonics. Nano Lett. 2023, 23, 5141–5147.

[43]

Albrecht, W.; Arslan Irmak, E.; Altantzis, T.; Pedrazo-Tardajos, A.; Skorikov, A.; Deng, T. S.; van der Hoeven, J. E. S.; van Blaaderen, A.; van Aert, S.; Bals, S. 3D atomic-scale dynamics of laser-light-induced restructuring of nanoparticles unraveled by electron tomography. Adv. Mater. 2021, 33, 2100972

[44]

Fang, A. Q.; White, S.; Jain, P. K.; Zamborini, F. P. Regioselective plasmonic coupling in metamolecular analogs of benzene derivatives. Nano Lett. 2015, 15, 542–548.

[45]

Zhu, D. Z.; Xie, J. W.; Yan, J. F.; He, G. Z.; Qiao, M. Ultrafast laser plasmonic fabrication of nanocrystals by molecule modulation for photoresponse multifunctional structures. Adv. Mater., 2023, 35, 2211983.

[46]

Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct. 2019, 128, 274–297.

[47]

Liu, Y. D.; Guo, J. M.; Yu, A. F.; Zhang, Y.; Kou, J. Z.; Zhang, K.; Wen, R. M.; Zhang, Y.; Zhai, J. Y.; Wang, Z. L. Magnetic-induced-piezopotential gated MoS2 field-effect transistor at room temperature. Adv. Mater. 2018, 30, 1704524.

[48]

Naqi, M.; Kim, B.; Kim, S. W.; Kim, S. Pulsed gate switching of MoS2 field-effect transistor based on flexible polyimide substrate for ultrasonic detectors. Adv. Funct. Mater. 2021, 31, 2007389.

[49]

Kumar, R.; Zheng, W.; Liu, X. H.; Zhang, J.; Kumar, M. MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 2020, 5, 1901062.

[50]

Bello, I. T.; Oladipo, A. O.; Adedokun, O.; Dhlamini, S. M. Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review. Mater. Today Commun. 2020, 25, 101664.

[51]

Wang, M. M.; Li, D. W.; Liu, K.; Guo, Q. T.; Wang, S. M.; Li, X. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser. ACS Nano 2020, 14, 11169–11177.

[52]

Zhu, D. Z.; Qiao, M.; Yan, J. F.; Xie, J. W.; Guo, H.; Deng, S. F.; He, G. Z.; Zhao, Y. Z.; Luo, M. Three-dimensional patterning of MoS2 with ultrafast laser. Nanoscale 2023, 15, 14837–14846.

[53]

Hu, S.; Elliott, E.; Sánchez-Iglesias, A.; Huang, J. Y.; Guo, C. Y.; Hou, Y. D.; Kamp, M.; Goerlitzer, E. S. A.; Bedingfield, K.; de Nijs, B. et al. Full control of plasmonic nanocavities using gold decahedra-on-mirror constructs with monodisperse facets. Adv. Sci. 2023, 10, 2207178.

[54]

Jakob, L. A.; Deacon, W. M.; Zhang, Y.; de Nijs, B.; Pavlenko, E.; Hu, S.; Carnegie, C.; Neuman, T.; Esteban, R.; Aizpurua, J. et al. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Nat. Commun. 2023, 14, 3291.

[55]

Cui, M. Y.; Huang, T.; Peng, Z. Y.; Xing, L. R.; Zhou, Z.; Guo, L.; Wang, J. L.; Xu, J. J.; Xiao, R. S. High-efficiency and low-intensity threshold femtosecond laser direct writing of precise metallic micropatterns on transparent substrate. Adv. Mater. Technol. 2023, 8, 2201610.

[56]

Han, F.; Gu, S. Y.; Klimas, A.; Zhao, N.; Zhao, Y. X.; Chen, S. C. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 2022, 378, 1325–1331.

[57]

Li, F.; Liu, S. F.; Liu, W. Y.; Hou, Z. W.; Jiang, J. X.; Fu, Z.; Wang, S.; Si, Y. L.; Lu, S. Y.; Zhou, H. W. et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals. Science 2023, 381, 1468–1474

[58]

Liu, S. F.; Hou, Z. W.; Lin, L. H.; Li, F.; Zhao, Y.; Li, X. Z.; Zhang, H.; Fang, H. H.; Li, Z. C.; Sun, H. B. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 2022, 377, 1112–1116

[59]

Zhao, X. L.; Jin, H.; Liu, J. Y.; Chao, J. L.; Liu, T. Y.; Zhang, H.; Wang, G.; Lyu, W. H.; Wageh, S.; Al-Hartomy, O. A. et al. Integration and applications of nanomaterials for ultrafast photonics. Laser Photon. Rev. 2022, 16, 2200386.

[60]

Huang, X. J.; Guo, Q. Y.; Yang, D. D.; Xiao, X. D.; Liu, X. F.; Xia, Z. G.; Fan, F. J.; Qiu, J. R.; Dong, G. P. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 2020, 14, 82–88.

[61]

Vorobyev, A. Y.; Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photon. Rev. 2013, 7, 385–407.

[62]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[63]

Ge, J.; Wang, X.; Drack, M.; Volkov, O.; Liang, M.; Cañón Bermúdez, G. S.; Illing, R.; Wang, C. G.; Zhou, S. Q.; Fassbender, J. et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 2019, 10, 4405.

[64]

Anderson, M.; Ediger, A.; Tsubaki, A.; Zuhlke, C.; Alexander, D.; Gogos, G.; Shield, J. E. Surface and microstructure investigation of picosecond versus femtosecond laser pulse processed copper. Surf. Coat. Technol. 2021, 409, 126872.

[65]

Ma, Y.; Wu, H.; Zhou, X.; Li, K.; Liao, Y.; Liang, Z.; Liu, L. Corrosion behavior of anodized Al-Cu-Li alloy: The role of intermetallic particle-introduced film defects. Corros. Sci. 2019, 158, 108110.

[66]

Vorobyev, A. Y.; Guo, C. L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express 2011, 19, A1031–A1036.

[67]

Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

[68]

Vercillo, V.; Tonnicchia, S.; Romano, J. M.; García-Girón, A.; Aguilar-Morales, A. I.; Alamri, S.; Dimov, S. S.; Kunze, T.; Lasagni, A. F.; Bonaccurso, E. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Funct. Mater. 2020, 30, 1910268.

[69]

Hu, Y. L.; Yuan, H. W.; Liu, S. L.; Ni, J. C.; Lao, Z. X.; Xin, C.; Pan, D.; Zhang, Y. Y.; Zhu, W. L.; Li, J. W. et al. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force. Adv. Mater. 2020, 32, 2002356.

[70]

Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

[71]

Rudenko, A.; Abou-Saleh, A.; Pigeon, F.; Mauclair, C.; Garrelie, F.; Stoian, R.; Colombier, J. P. High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces. Acta Mater. 2020, 194, 93–105.

[72]

Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Y. N.; Zhakhovsky, V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I. et al. Laser-induced translative hydrodynamic mass snapshots: Noninvasive characterization and predictive modeling via mapping at nanoscale. Phys. Rev. Appl. 2017, 8, 044016.

[73]

He, M.; Wu, C. P.; Shugaev, M. V.; Samolyuk, G. D.; Zhigilei, L. V. Computational study of short-pulse laser-induced generation of crystal defects in Ni-based single-phase binary solid-solution alloys. J. Phys. Chem. C 2019, 123, 2202–2215.

[74]

Mo, M. Z.; Chen, Z. J.; Glenzer, S. Ultrafast visualization of phase transitions in nonequilibrium warm dense matter. MRS Bull. 2021, 46, 694–703.

[75]

Sedao, X.; Abou Saleh, A.; Rudenko, A.; Douillard, T.; Esnouf, C.; Reynaud, S.; Maurice, C.; Pigeon, F.; Garrelie, F.; Colombier, J. P. Self-arranged periodic nanovoids by ultrafast laser-induced near-field enhancement. ACS Photon. 2018, 5, 1418–1426.

[76]

Tsibidis, G. D.; Fotakis, C.; Stratakis, E. From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys. Rev. B 2015, 92, 041405(R

[77]

Guay, J. M.; Calà Lesina, A.; Côté, G.; Charron, M.; Poitras, D.; Ramunno, L.; Berini, P.; Weck, A. Laser-induced plasmonic colours on metals. Nat. Commun. 2017, 8, 16095.

[78]

Li, C. Y.; Duan, S.; Wen, B. Y.; Li, S. B.; Kathiresan, M.; Xie, L. Q.; Chen, S.; Anema, J. R.; Mao, B. W.; Luo, Y. et al. Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat. Nanotechnol. 2020, 15, 922–926.

[79]

Wu, C. P.; Zhigilei, L. V. Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J. Phys. Chem. C 2016, 120, 4438–4447.

[80]

Xie, J. W.; Yan, J. F.; Zhu, D. Z.; He, G. Z. Atomic-level insight into the formation of subsurface dislocation layer and its effect on mechanical properties during ultrafast laser micro/nano fabrication. Adv. Funct. Mater. 2022, 32, 2108802.

[81]

Sharma, S. M.; Turneaure, S. J.; Winey, J. M.; Gupta, Y. M. What determines the fcc–bcc structural transformation in shock compressed noble metals. Phys. Rev. Lett. 2020, 124, 235701.

[82]

Thevamaran, R.; Griesbach, C.; Yazdi, S.; Ponga, M.; Alimadadi, H.; Lawal, O.; Jeon, S. J.; Thomas, E. L. Dynamic martensitic phase transformation in single-crystal silver microcubes. Acta Mater. 2020, 182, 131–143.

[83]

Lu, J. Z.; Wu, L. J.; Sun, G. F.; Luo, K. Y.; Zhang, Y. K.; Cai, J.; Cui, C. Y.; Luo, X. M. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017, 127, 252–266.

[84]

Wu, C. P.; Christensen, M. S.; Savolainen, J. M.; Balling, P.; Zhigilei, L. V. Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys. Rev. B 2015, 91, 035413.

[85]

Zhang, L.; Huang, H.; Zhao, H. W.; Ma, Z. C.; Yang, Y. H.; Hu, X. L. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation. Nanoscale Res. Lett. 2013, 8, 211.

[86]

Ferreira, R.; Carvalho, Ó.; Sobral, L.; Carvalho, S.; Silva, F. Laser texturing of piston ring for tribological performance improvement. Friction 2023, 11, 1895–1905.

[87]

Liu, Z. Y.; Yang, J.; Li, Y. L.; Li, W. Y.; Chen, J. S.; Shen, L.; Zhang, P. L.; Yu, Z. S. Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser. Appl. Surf. Sci. 2020, 520, 146316.

[88]

Chen, Z. J.; Yang, J.; Liu, H. B.; Zhao, Y. X.; Pan, R. A short review on functionalized metallic surfaces by ultrafast laser micromachining. Int. J. Adv. Manuf. Technol. 2022, 119, 6919–6948.

[89]

Xie, J. W.; Qiao, M.; Zhu, D. Z.; Yan, J. F.; Deng, S. F.; He, G. Z.; Luo, M.; Zhao, Y. Z. Laser induced coffee-ring structure through solid–liquid transition for color printing. Small 2023, 19, 2205696.

[90]

Trdan, U.; Skarba, M.; Grum, J. Laser shock peening effect on the dislocation transitions and grain refinement of Al-Mg-Si alloy. Mater. Charact. 2014, 97, 57–68.

[91]

Ye, C.; Liao, Y. L.; Cheng, G. J. Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160. Adv. Eng. Mater. 2010, 12, 291–297.

[92]

Li, J.; Zhou, J. Z.; Liu, L.; Feng, A. X.; Huang, S.; Meng, X. K. High-cycle bending fatigue behavior of TC6 titanium alloy subjected to laser shock peening assisted by cryogenic temperature. Surf. Coat. Technol. 2021, 409, 126848.

[93]

Zhang, H.; Ren, Z. C.; Liu, J.; Zhao, J. Y.; Liu, Z. K.; Lin, D.; Zhang, R. X.; Graber, M. J.; Thomas, N. K.; Kerek, Z. D. et al. Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening. J. Alloys Compd. 2019, 802, 573–582.

[94]

Meng, X. K.; Leng, X. M.; Shan, C.; Zhou, L. C.; Zhou, J. Z.; Huang, S.; Lu, J. Z. Vibration fatigue performance improvement in 2024-T351 aluminum alloy by ultrasonic-assisted laser shock peening. Int. J. Fatigue 2023, 168, 107471.

[95]

He, G. Z.; Yan, J. F.; Zhu, D. Z.; Xie, J. W. Improvement of laser shock peening depth through regulation of surface optical absorption. Adv. Mater. Interfaces 2022, 9, 2101232.

[96]

Khodasevych, I. E.; Wang, L. P.; Mitchell, A.; Rosengarten, G. Micro- and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881.

[97]

Yang, J. J.; Zhang, X. F.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the visible: Bioinspired infrared adaptive materials. Adv. Mater. 2021, 33, 2004754.

[98]

He, G. Z.; Qian, C. K.; Cai, Z. P.; Li, K. J.; Liu, Q.; Yan, J. F. Magnetic field-assisted laser shock peening of Ti6Al4V alloy. Adv. Eng. Mater., 2023, 25, 2201843.

[99]

He, D. S.; Li, L. H.; Guo, W.; He, G. Z.; Peng, P.; Shao, T. W.; Huan, H.; Zhang, G. X.; Han, G. F.; Yan, J. F. Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening. Corros. Sci. 2021, 184, 109364.

[100]

Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

[101]

Zhang, J.; Zhu, D. Z.; Yan, J. F.; Wang, C. A. Strong metal–support interactions induced by an ultrafast laser. Nat. Commun. 2021, 12, 6665.

[102]

Kerse, C.; Kalaycıoğlu, H.; Elahi, P.; Çetin, B.; Kesim, D. K.; Akçaalan, Ö.; Yavaş, S.; Aşık, M. D.; Öktem, B.; Hoogland, H. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84–88.

[103]

Yu, J. C.; Yan, J. F.; Jiang, L. Crystallization of polymorphic sulfathiazole controlled by femtosecond laser-induced cavitation bubbles. Cryst. Growth Des. 2021, 21, 3202–3210.

[104]

Sidhu, M. S.; Kumar, B.; Singh, K. P. The processing and heterostructuring of silk with light. Nat. Mater. 2017, 16, 938–945.

[105]

Arefin, A.; Mcculloch, Q.; Martinez, R.; Martin, S. A.; Singh, R.; Ishak, O. M.; Higgins, E. M.; Haffey, K. E.; Huang, J. H.; Iyer, S. et al. Micromachining of polyurethane membranes for tissue engineering applications. ACS Biomater. Sci. Eng. 2018, 4, 3522–3533.

[106]

Yu, J. C.; Jiang, L.; Yan, J. F.; Li, W. Q. Microprocessing on single protein crystals using femtosecond pulse laser. ACS Biomater. Sci. Eng. 2020, 6, 6445–6452.

[107]

Wu, Y.; Ali, M. R. K.; Chen, K. C.; Fang, N.; El-Sayed, M. A. Gold nanoparticles in biological optical imaging. Nano Today 2019, 24, 120–140.

[108]

Choi, J. H.; Lim, J.; Shin, M.; Paek, S. H.; Choi, J. W. CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 2020, 21, 693–699.

[109]

Zhou, J.; Jangili, P.; Son, S.; Ji, M. S.; Won, M.; Kim, J. S. Fluorescent diagnostic probes in neurodegenerative diseases. Adv. Mater. 2020, 32, 2001945.

[110]

Guan, J.; Sagar, L. K.; Li, R.; Wang, D. Q.; Bappi, G.; Wang, W. J.; Watkins, N.; Bourgeois, M. R.; Levina, L.; Fan, F. J. et al. Quantum dot-plasmon lasing with controlled polarization patterns. ACS nano 2020, 14, 3426–3433.

[111]

Freire-Fernández, F.; Cuerda, J.; Daskalakis, K. S.; Perumbilavil, S.; Martikainen, J. P.; Arjas, K.; Törmä, P.; van Dijken, S. Magnetic on-off switching of a plasmonic laser. Nat. Photon. 2022, 16, 27–32.

[112]

Yu, J. C.; Yan, J. F.; Jiang, L.; Li, J. Q.; Guo, H.; Qiao, M.; Qu, L. T. Fluorescence enhancement of organic dyes by femtosecond laser-induced cavitation bubbles for crystal imaging. Nanoscale 2023, 15, 8730–8739.

[113]

Wang, L. Z.; Jiang, G. C.; Tian, Z.; Chen, C. H.; Hu, X. Y.; Peng, R.; Zhang, H. J.; Fan, P. X.; Zhong, M. L. Superhydrophobic microstructures for better anti-icing performances: Open-cell or closed-cell. Mater. Horiz. 2023, 10, 209–220.

[114]

Chen, C. H.; Tian, Z.; Luo, X.; Jiang, G. C.; Hu, X. Y.; Wang, L. Z.; Peng, R.; Zhang, H. J.; Zhong, M. L. Cauliflower-like micro-nano structured superhydrophobic surfaces for durable anti-icing and photothermal de-icing. Chem. Eng. J. 2022, 450, 137936.

[115]

Ma, Y. L.; Jiang, L.; Hu, J.; Yuan, Y. J. Engineering a multiscale multifunctional theragenerative system for enhancing osteosarcoma therapy, bone regeneration and bacterial eradication. Chem. Eng. J. 2022, 430, 132622.

[116]

Le, T. S. D.; Lee, Y. A.; Nam, H. K.; Jang, K. Y.; Yang, D.; Kim, B.; Yim, K.; Kim, S. W.; Yoon, H.; Kim, Y. J. Green flexible graphene-inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv. Funct. Mater. 2022, 32, 2107768.

[117]

Li, Q.; Wang, Q. Z.; Li, L. L.; Yang, L. J.; Wang, Y.; Wang, X. H.; Fang, H. T. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv. Energy Mater. 2020, 10, 2000470.

[118]

Ji, Y. Q.; Zhang, Y.; Zhu, J. Q.; Geng, P.; Halpert, J. E.; Guo, L. Splashing-assisted femtosecond laser-activated metal deposition for mold- and mask-free fabrication of robust microstructured electrodes for flexible pressure sensors. Small 2023, 19, 2207362.

[119]

Moreddu, R.; Nasrollahi, V.; Kassanos, P.; Dimov, S.; Vigolo, D.; Yetisen, A. K. Lab-on-a-contact lens platforms fabricated by multi-axis femtosecond laser ablation. Small 2021, 17, 2102008.

[120]

Chen, W. T.; Zhu, A. Y.; Sisler, J.; Bharwani, Z.; Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 2019, 10, 355.

[121]

Wen, D. D.; Cadusch, J. J.; Meng, J. J.; Crozier, K. B. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images. Adv. Funct. Mater. 2020, 30, 1906415.

[122]

Wu, Y. K.; Yang, W. H.; Fan, Y. B.; Song, Q. H.; Xiao, S. M. TiO2 metasurfaces: From visible planar photonics to photochemistry. Sci. Adv. 2019, 5, eaax0939.

[123]

Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194.

[124]

Qiao, M.; Yan, J. F.; Jiang, L. Direction controllable nano-patterning of titanium by ultrafast laser for surface coloring and optical encryption. Adv. Opt. Mater. 2022, 10, 2101673.

[125]

Song, B. S.; Noda, S.; Asano, T. Photonic devices based on in-plane hetero photonic crystals. Science 2003, 300, 1537.

[126]

Withayachumnankul, W.; Fujita, M.; Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications. Adv. Opt. Mater. 2018, 6, 1800401.

[127]

Zhang, B.; Li, L. Q.; Wu, B.; Liu, H. L.; Wu, P. F.; Wang, L.; Chen, F. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations. J. Lightw. Technol. 2021, 39, 1438–1443.

[128]

Lv, J. M.; Hong, B. B.; Tan, Y.; Chen, F.; de Aldana, J. R. V.; Wang, G. P. Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching. Photon. Res. 2020, 8, 257–262.

[129]

Yang, L.; Mayer, F.; Bunz, U. H. F.; Blasco, E.; Wegener, M. Multi-material multi-photon 3D laser micro- and nanoprinting. Light Adv. Manuf. 2021, 2, 296–312.

[130]

Tokel, O.; Turnalı, A.; Makey, G.; Elahi, P.; Çolakoğlu, T.; Ergeçen, E.; Yavuz, Ö.; Hübner, R.; Zolfaghari Borra, M.; Pavlov, I. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photon. 2017, 11, 639–645.

[131]

Li, J. Q.; Yan, J. D.; Jiang, L.; Yu, J. C.; Guo, H.; Qu, L. T. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser. Light Sci. Appl. 2023, 12, 164.

[132]

Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

[133]

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

[134]

Chang, C.; Wu, H. H.; He, D. S.; Pei, Y. L.; Wu, C. F.; Wu, X. F.; Yu, H. L.; Zhu, F. Y.; Wang, K. D.; Chen, Y. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783

[135]

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

[136]

Yan, J. F.; Deng, S. F.; Zhu, D. Z.; Bai, H. L.; Zhu, H. W. Self-powered SnSe photodetectors fabricated by ultrafast laser. Nano Energy 2022, 97, 107188.

[137]

Chen, J. W.; Lee, P. S. Electrochemical supercapacitors: From mechanism understanding to multifunctional applications. Adv. Energy Mater. 2021, 11, 2003311.

[138]

Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

[139]

Gao, J.; Shao, C. X.; Shao, S. X.; Bai, C. C.; Khalil, U. R.; Zhao, Y.; Jiang, L.; Qu, L. T. Laser-assisted multiscale fabrication of configuration-editable supercapacitors with high energy density. ACS Nano 2019, 13, 7463–7470.

[140]

Ye, J. L.; Tan, H. B.; Wu, S. L.; Ni, K.; Pan, F.; Liu, J.; Tao, Z. C.; Qu, Y.; Ji, H. X.; Simon, P. et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 2018, 30, 1801384.

[141]

Jiao, S. Q.; Zhou, A. G.; Wu, M. Z.; Hu, H. B. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 2019, 6, 1900529.

[142]

Guo, H.; Yan, J. F.; Jiang, L.; Deng, S. F.; Lin, X. Z.; Qu, L. T. Femtosecond laser bessel beam fabrication of a supercapacitor with a nanoscale electrode gap for high specific volumetric capacitance. ACS Appl. Mater. Interfaces 2022, 14, 39220–39229.

[143]

Zhuang, P. Y.; Sun, Y. Y.; Li, L.; Chee, M. O. L.; Dong, P.; Pei, L. Y.; Chu, H.; Sun, Z. Z.; Shen, J. F.; Ye, M. X. et al. FIB-patterned nano-supercapacitors: Minimized size with ultrahigh performances. Adv. Mater. 2020, 32, 1908072 .

[144]

Yan, Z. G.; Wang, L. L.; Xia, Y. F.; Qiu, R. D.; Liu, W. Q.; Wu, M.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Zhu, M. M. et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.

[145]

Khodabandehlo, A.; Noori, A.; Rahmanifar, M. S.; El-Kady, M. F.; Kaner, R. B.; Mousavi, M. F. Laser-scribed graphene-polyaniline microsupercapacitor for internet-of-things applications. Adv. Funct. Mater. 2022, 32, 2204555.

[146]

Le, T. S. D.; Park, S.; An, J. N.; Lee, P. S.; Kim, Y. J. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 2019, 29, 1902771.

[147]

Xie, J. W.; Zhao, Y. Z.; Zhu, D. Z.; Yan, J. F.; Li, J. Q.; Qiao, M.; He, G. Z.; Deng, S. F. A machine learning-combined flexible sensor for tactile detection and voice recognition. ACS Appl. Mater. Interfaces 2023, 15, 12551–12559.

[148]

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

[149]

Shi, X. Y.; Zhou, F.; Peng, J. X.; Wu, R. A.; Wu, Z. S.; Bao, X. H. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv. Funct. Mater. 2019, 29, 1902860.

[150]

Guo, H.; Yan, J. F.; Jiang, L.; Qu, L. T.; Yin, J. G.; Lu, J. G. Conductive writing with high precision by laser-induced point-to-line carbonization strategy for flexible supercapacitors. Adv. Opt. Mater. 2021, 9, 2100793.

[151]

Jayaramulu, K.; Horn, M.; Schneemann, A.; Saini, H.; Bakandritsos, A.; Ranc, V.; Petr, M.; Stavila, V.; Narayana, C.; Scheibe, B. et al. Covalent graphene-mof hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 2021, 33, 2004560.

[152]

Zhang, P. P.; Wang, F. X.; Yang, S.; Wang, G.; Yu, M. H.; Feng, X. L. Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Mater. 2020, 28, 160–187.

[153]

Zhou, C. X.; Gao, T. T.; Wang, Y. J.; Liu, Q. L.; Huang, Z. H.; Liu, X. X.; Qing, M. Q.; Xiao, D. Synthesis of p-doped and NiCo-hybridized graphene-based fibers for flexible asymmetrical solid-state micro-energy storage device. Small 2019, 15, 1803469.

[154]

Wang, Y. M.; Wang, X.; Li, X. L.; Liu, R.; Bai, Y.; Xiao, H. H.; Liu, Y.; Yuan, G. H. Intercalating ultrathin MoO3 nanobelts into MXene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices. Nano-Micro Lett. 2020, 12, 115.

[155]

Huang, A. L.; El-Kady, M. F.; Chang, X. Y.; Anderson, M.; Lin, C. W.; Turner, C. L.; Kaner, R. B. Facile fabrication of multivalent VO x /graphene nanocomposite electrodes for high-energy-density symmetric supercapacitors. Adv. Energy Mater. 2021, 11, 2100768.

[156]

Zhou, Y.; Qi, H. L.; Yang, J. Y.; Bo, Z.; Huang, F.; Islam, M. S.; Lu, X. Y.; Dai, L. M.; Amal, R.; Wang, C. H. et al. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 2021, 14, 1854–1896.

[157]

Yuan, Y. J.; Jiang, L.; Li, X.; Zuo, P.; Xu, C. Y.; Tian, M. Y.; Zhang, X. Q.; Wang, S. M.; Lu, B.; Shao, C. X. et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 2020, 11, 6185.

[158]

Guo, H.; Qiao, M.; Yan, J. F.; Jiang, L.; Yu, J. C.; Li, J. Q.; Deng, S. F.; Qu, L. T. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance. Adv. Funct. Mater. 2023, 33, 2213514 .

[159]

Hu, Y. J.; Wu, M. M.; Chi, F. Y.; Lai, G. B.; Li, P. Y.; He, W. Y.; Lu, B.; Weng, C. X.; Lin, J. G.; Chen, F. G. et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 2023, 624, 74–79.

[160]
Li, J. Q.; Yan, J. F.; Jiang, L.; Qu, L. T. Chiral lithography with vortex non-diffracted laser for orbital angular momentum detection. Laser Photon. Rev., in press, https://doi.org/10.1002/lpor.202301050.
[161]

Deng, S. F.; Guo, H.; Yan, J. F.; Zhu, D. Z.; Li, J. Q.; Qiao, M.; Xie, J. W. NIR–UV dual-mode photodetector with the assistance of machine-learning fabricated by hybrid laser processing. Chem. Eng. J. 2023, 472, 144908.

[162]
Liao, Q. H.; Zhu, K. X.; Hao, X. Z.; Wu, C. X.; Li, J.; Cheng, H. H.; Yan, J. F.; Jiang, L.; Qu, L. T. Bio-inspired ultrathin perfect absorber for high-performance photothermal conversion. Adv. Mater., in press, https://doi.org/10.1002/adma.202313366.
[163]

Peng, Z. L.; Guo, W.; Liu, T.; Wang, X. W.; Shen, D. Z.; Zhu, Y.; Zhou, X. W.; Yan, J. F.; Zhang, H. Q. Flexible copper-based thermistors fabricated by laser direct writing for low-temperature sensing. ACS Appl. Mater. Interfaces 2024, 16, 10496–10507.

[164]

Zhang, X. L.; Yu, F.; Chen, Z. G.; Tian, Z. N.; Chen, Q. D.; Sun, H. B.; Ma, G. C. Non-Abelian braiding on photonic chips. Nat. Photon. 2022, 16, 390–395.

[165]

Xu, C. Y.; Jiang, L.; Li, X.; Li, C.; Shao, C. X.; Zuo, P.; Liang, M. S.; Qu, L. T.; Cui, T. H. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy 2020, 67, 104260.

[166]

Ouyang, W. Q.; Xu, X. Y.; Lu, W. P.; Zhao, N.; Han, F.; Chen, S. C. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 2023, 14, 1716.

[167]

Yang, L.; Hu, H. R.; Scholz, A.; Feist, F.; Cadilha Marques, G.; Kraus, S.; Bojanowski, N. M.; Blasco, E.; Barner-Kowollik, C.; Aghassi-Hagmann, J. et al. Laser printed microelectronics. Nat. Commun. 2023, 14, 1103.

Nano Research
Pages 6212-6230
Cite this article:
Guo H, Xie J, He G, et al. A review of ultrafast laser micro/nano fabrication: Material processing, surface/interface controlling, and devices fabrication. Nano Research, 2024, 17(7): 6212-6230. https://doi.org/10.1007/s12274-024-6644-z
Topics:

1349

Views

9

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 18 January 2024
Revised: 14 March 2024
Accepted: 21 March 2024
Published: 17 May 2024
© Tsinghua University Press 2024
Return