AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sulfate-assisted Ni/Fe-based electrodes for anion exchange membrane saline splitting

Yujun Han1Li Shao2Yuhang Liu1Guodong Li3Tongzhou Wang2,4( )Xuerong Zheng2Jihong Li2,4( )Xiaopeng Han1Wenbin Hu1Yida Deng1,2( )
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
Show Author Information

Graphical Abstract

In this work, we present a novel oxygen-evolution electrode (ultrathin Fe-Ni3S2 nanosheet arrays supported on nickel-iron foam (noted as NiFeS/NIF)) composed of a sulfate-modulated nickel-iron hydroxide as the catalytic active layer and Fe-Ni3S2 as the corrosion-resistant layer. The electrode demonstrates exceptional oxygen evolution activity and stability even at high current densities (e.g., 1000 mA·cm−2). We assembled and tested an anion exchange membrane electrolyzer with NiFeS/NIF as the anode under industrial conditions. The experimental results indicate that the electrolyzer achieved an impressive energy conversion efficiency of 75% ± 0.5%.

Abstract

Saline water electrolysis is an appealing strategy for hydrogen production, attracting more attention in recent years. NiFe-based electrodes exhibit promise as catalysts for saline water electrolysis. Nevertheless, they suffer from the inferior service life of the oxygen evolution reaction (OER). Herein, we report an oxygen-evolution electrode consisting of a sulfate-modulated nickel-iron hydroxide (NiFeOOH) affording as the catalytic active layer and Fe-Ni3S2 as the corrosion-proof layer. The developed electrode only requires overpotentials of 220 and 292 mV to deliver the current density of 10 and 500 mA·cm−2, respectively. More importantly, it presents long-term stability exceeding 140 and 100 h in 1 M KOH at high current densities of 500 and 1000 mA·cm−2, respectively, as well as 120 h for saline water electrolysis at 100 mA·cm−2. Experimental results reveal that the generated sulfate plays an indispensable role in improving stability and corrosion resistance. We assembled and tested an anion exchange membrane electrolyzer with Pt/C and NiFeS/NIF as the cathode and anode, respectively, under industrial conditions. This overall water-splitting electrolyzer achieves an impressive energy conversion efficiency of 75% ± 0.5%. This report offers fresh insights into the design of stable NiFe-based electrodes, which may further promote its practical applications for saline water electrolysis.

Electronic Supplementary Material

Download File(s)
6646_ESM.pdf (2.9 MB)

References

[1]

Deng, L. M.; Hung, S. F.; Zhao, S.; Zeng, W. J.; Lin, Z. Y.; Hu, F.; Xie, Y. Y.; Yin, L. J.; Li, L. L.; Peng, S. J. Unveiling coordination transformation for dynamically enhanced hydrogen evolution catalysis. Energy Environ. Sci. 2023, 16, 5220–5230.

[2]

Zhang, M. C.; Liu, Q. Q.; Sun, W. P.; Sun, K.; Shen, Y. C.; An, W.; Zhang, L.; Chen, H.; Zou, X. X. Nanostructured intermetallics: From rational synthesis to energy electrocatalysis. Chem. Synth. 2023, 3, 28.

[3]

Wang, T. Z.; Miao, L. C.; Zheng, S. Y.; Qin, H. Y.; Cao, X. J.; Yang, L.; Jiao, L. F. Interfacial Engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catal. 2023, 13, 4091–4100.

[4]

Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

[5]

Zhang, Z.; Li, X. P.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Han, X. P.; Hu, W. B. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 7245–7250.

[6]

Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.

[7]

Yu, D. S.; Hao, Y. X.; Han, S. L.; Zhao, S.; Zhou, Q. C.; Kuo, C. H.; Hu, F.; Li, L. L.; Chen, H. Y.; Ren, J. W. et al. Ultrafast combustion synthesis of robust and efficient electrocatalysts for high-current-density water oxidation. ACS Nano 2023, 17, 1701–1712.

[8]

Kim, H. J.; Kim, H. Y.; Joo, J.; Joo, S. H.; Lim, J. S.; Lee, J.; Huang, H. W.; Shao, M. H.; Hu, J.; Kim, J. Y. et al. Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. J. Mater. Chem. A 2022, 10, 50–88.

[9]

Hao, Y. X.; Hung, S. F.; Zeng, W. J.; Wang, Y.; Zhang, C. C.; Kuo, C. H.; Wang, L. Q.; Zhao, S.; Zhang, Y.; Chen, H. Y. et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 2023, 145, 23659–23669.

[10]

Liu, K. W.; Zhang, C. L.; Sun, Y. D.; Zhang, G. H.; Shen, X. C.; Zou, F.; Zhang, H. C.; Wu, Z. W.; Wegener, E. C.; Taubert, C. J. et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 2018, 12, 158–167.

[11]

Reith, L.; Hausmann, J. N.; Mebs, S.; Mondal, I.; Dau, H.; Driess, M.; Menezes, P. W. In situ detection of iron in oxidation states ≥ IV in cobalt-iron oxyhydroxide reconstructed during oxygen evolution reaction. Adv. Energy Mater. 2023, 13, 2203886

[12]

Zheng, X. R.; Cao, Y. H.; Wu, Z.; Ding, W. L.; Xue, T.; Wang, J. J.; Chen, Z. L.; Han, X. P.; Deng, Y. D.; Hu, W. B. Rational design and spontaneous sulfurization of NiCo-(oxy)Hydroxysulfides nanosheets with modulated local electronic configuration for enhancing oxygen electrocatalysis. Adv. Energy Mater. 2022, 12, 2103275.

[13]

Pei, X. Y.; Mu, Y.; Dong, X. Y.; Ding, C. T.; Xu, L. S.; Cui, M.; Meng, C. G.; Zhang, Y. F. Ion-change promoting Co nanoparticles@N-doped carbon framework on Co2SiO4/rGO support forming “double-triple-biscuit” structure boosts oxygen evolution reaction. Carbon Neutralization 2023, 2, 115–126.

[14]

Wang, T. Z.; Cao, X. J.; Jiao, L. F. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 2021, 1, 69–74.

[15]

He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W. J.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.

[16]

Zhao, S.; Hu, F.; Yin, L. J.; Li, L. L.; Peng, S. J. Manipulating electron redistribution induced by asymmetric coordination for electrocatalytic water oxidation at a high current density. Sci. Bull., 2023, 68, 1389–1398.

[17]

Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

[18]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[19]

Liu, J. C.; Xu, S. M.; Li, Y. F.; Zhang, R. K.; Shao, M. F. Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater. Appl. Catal. B: Environ. 2020, 264, 118540.

[20]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[21]

Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962–972.

[22]

Dresp, S.; Dionigi, F.; Loos, S.; de Araujo, J. F.; Spöri, C.; Gliech, M.; Dau, H.; Strasser, P. Direct electrolytic splitting of seawater: Activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Adv. Energy Mater. 2018, 8, 1800338.

[23]

Li, J. H.; Liu, Y. P.; Chen, H.; Zhang, Z. K.; Zou, X. X. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 2021, 31, 2101820.

[24]

Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.

[25]

Zhang, L. Y.; Wang, Z. Y.; Qiu, J. S. Energy-saving hydrogen production by seawater electrolysis coupling sulfion degradation. Adv. Mater. 2022, 34, 2109321.

[26]

Wang, S. H.; Yang, P.; Sun, X. F.; Xing, H. L.; Hu, J.; Chen, P.; Cui, Z. T.; Zhu, W. K.; Ma, Z. J. Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl. Catal. B: Environ. 2021, 297, 120386.

[27]

Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. MnO x /IrO x as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270–10281.

[28]

Xu, Y. S.; Lv, H. H.; Lu, H. S.; Quan, Q. H.; Li, W. Z.; Cui, X. J.; Liu, G. B.; Jiang, L. H. Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy 2022, 98, 107295.

[29]

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

[30]

Chang, J. F.; Wang, G. Z.; Yang, Z. Z.; Li, B. Y.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y. G.; Wang, G. F. et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.

[31]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[32]

Tan, L.; Yu, J. T.; Wang, C.; Wang, H. F.; Liu, X. E.; Gao, H. T.; Xin, L. T.; Liu, D. Z.; Hou, W. G.; Zhan, T. R. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv. Funct. Mater. 2022, 32, 2200951.

[33]

Lee, S. A.; Kim, J.; Kwon, K. C.; Park, S. H.; Jang, H. W. Anion exchange membrane water electrolysis for sustainable large-scale hydrogen production. Carbon Neutralization 2022, 1, 26–48.

[34]

Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

[35]

Xu, Q. C.; Chu, M. S.; Liu, M. M.; Zhang, J. H.; Jiang, H.; Li, C. Z. Fluorine-triggered surface reconstruction of Ni3S2 electrocatalysts towards enhanced water oxidation. Chem. Eng. J. 2021, 411, 128488.

[36]

Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431–5441.

[37]

Wang, C. Z.; Zhu, M. Z.; Cao, Z. Y.; Zhu, P.; Cao, Y. Q.; Xu, X. Y.; Xu, C. X.; Yin, Z. Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B: Environ. 2021, 291, 120071.

[38]

Dong, B.; Zhao, X.; Han, G. Q.; Li, X.; Shang, X.; Liu, Y. R.; Hu, W. H.; Chai, Y. M.; Zhao, H.; Liu, C. G. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 13499–13508.

[39]

Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; de Arquer, F. P. G.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.

[40]

Wu, C. C.; Li, H. Q.; Xia, Z. X.; Zhang, X. M.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction. ACS Catal. 2020, 10, 11127–11135.

[41]

Li, D. R.; Wan, W. J.; Wang, Z. W.; Wu, H. Y.; Wu, S. X.; Jiang, T.; Cai, G. X.; Jiang, C. Z.; Ren, F. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv. Energy Mater. 2022, 12, 2201913.

[42]

Zhang, J. T.; Yu, L.; Chen, Y.; Lu, X. F.; Gao, S. Y.; Lou, X. W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 2020, 32, 1906432.

[43]

Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.

[44]

Zhang, J. F.; Zhang, H. J.; Huang, Y. Electron-rich NiFe layered double hydroxides via interface engineering for boosting electrocatalytic oxygen evolution. Appl. Catal. B: Environ. 2021, 297, 120453.

[45]

Qin, J. F.; Yang, M.; Hou, S.; Dong, B.; Chen, T. S.; Ma, X.; Xie, J. Y.; Zhou, Y. N.; Nan, J.; Chai, Y. M. Copper and cobalt co-doped Ni3S2 grown on nickel foam for highly efficient oxygen evolution reaction. Appl. Surf. Sci. 2020, 502, 144172.

[46]

He, W. J.; Ren, G.; Li, Y.; Jia, D. B.; Li, S. Y.; Cheng, J. N.; Liu, C. C.; Hao, Q. Y.; Zhang, J.; Liu, H. Amorphous nickel-iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction. Catal. Sci. Technol. 2020, 10, 1708–1713.

[47]

Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.

[48]

Zhu, W. X.; Yue, X. Y.; Zhang, W. T.; Yu, S. X.; Zhang, Y. H.; Wang, J.; Wang, J. L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489.

[49]

Yang, Y.; Zhu, B.; Guo, P. F.; Wang, W. J.; Wang, W. T.; Wang, K.; He, Z. H.; Liu, Z. T. Core–shell trimetallic NiFeV disulfides and amorphous high-valance NiFe hydroxide nanosheets enhancing oxygen evolution reaction. Chem. Eng. J. 2022, 430, 133047.

[50]

Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

[51]

Qiao, H. Y.; Yong, J. X.; Dai, X. P.; Zhang, X.; Ma, Y. D.; Liu, M. Z.; Luan, X. B.; Cai, J. C.; Yang, Y.; Zhao, H. H. et al. Hollow FeNi-based hybrid polyhedron derived from unique sulfur-modulating coordinated transition bimetal complexes for efficient oxygen evolution reactions. J. Mater. Chem. A 2017, 5, 21320–21327.

[52]

Yang, Y. Y.; Meng, H. X.; Kong, C.; Yan, S. H.; Ma, W. X.; Zhu, H.; Ma, F. Q.; Wang, C. J.; Hu, Z. A. Heterogeneous Ni3S2@FeNi2S4@NF nanosheet arrays directly used as high efficiency bifunctional electrocatalyst for water decomposition. J. Colloid Interface Sci. 2021, 599, 300–312.

[53]

Zhou, J. Q.; Yu, L.; Zhu, Q. C.; Huang, C. Q.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core–shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18118–18125.

[54]

Zhang, D. L.; Mou, H. Y.; Chen, L.; Xing, G.; Wang, D. B.; Song, C. X. Surface/interface engineering N-doped carbon/NiS2 nanosheets for efficient electrocatalytic H2O splitting. Nanoscale 2020, 12, 3370–3376.

[55]

Ning, M. H.; Zhang, F. H.; Wu, L. B.; Xing, X. X.; Wang, D. Z.; Song, S. W.; Zhou, Q. C.; Yu, L.; Bao, J. M.; Chen, S. et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 2022, 15, 3945–3957.

[56]

Tang, L. N.; Fan, T. T.; Chen, Z.; Tian, J. L.; Guo, H. Q.; Peng, M. L.; Zuo, F.; Fu, X. Z.; Li, M.; Bu, Y. F. et al. Binary-dopant promoted lattice oxygen participation in OER on cobaltate electrocatalyst. Chem. Eng. J. 2021, 417, 129324.

[57]

Parvez, S.; Fu, Y.; Li, J. Y.; Long, M. J. C.; Lin, H. Y.; Lee, D. K.; Hu, G. S.; Aye, Y. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response. J. Am. Chem. Soc. 2015, 137, 10–13.

[58]

Mabayoje, O.; Shoola, A.; Wygant, B. R.; Mullins, C. B. The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 2016, 1, 195–201.

[59]

Wang, Y.; Li, X. P.; Huang, Z.; Wang, H. Z.; Chen, Z. L.; Zhang, J. F.; Zheng, X. R.; Deng, Y. D.; Hu, W. B. Amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew. Chem., Int. Ed. 2023, 62, e202215256.

[60]

Cheng, Z.; Wang, J. H.; Choi, Y. M.; Yang, L.; Lin, M. C.; Liu, M. L. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 2011, 4, 4380–4409.

[61]

Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639–2645.

[62]

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

[63]

Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.

[64]

Chala, S. A.; Tsai, M. C.; Olbasa, B. W.; Lakshmanan, K.; Huang, W. H.; Su, W. N.; Liao, Y. F.; Lee, J. F.; Dai, H. J.; Hwang, B. J. Tuning dynamically formed active phases and catalytic mechanisms of in situ electrochemically activated layered double hydroxide for oxygen evolution reaction. ACS Nano 2021, 15, 14996–15006.

[65]

Wu, Y. J.; Yang, J.; Tu, T. X.; Li, W. Q.; Zhang, P. F.; Zhou, Y.; Li, J. F.; Li, J. T.; Sun, S. G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew. Chem., Int. Ed. 2021, 60, 26829–26836.

[66]

Zheng, Z. J.; Gao, Y.; Gui, Y.; Zhu, M. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros. Sci. 2012, 54, 60–67.

[67]

Zou, C. J.; Li, Z. F.; Wang, C. X.; Hong, J. B.; Chen, J.; Zhong, S. W. Facile electrodeposition route for the fabrication of Ni/Ni(OH)2 nanocomposite films with different supporting electrolytes and their electrochemical properties. Chem. Phys. Lett. 2022, 793, 139471.

[68]

Li, Y. T.; Ma, W. H.; Wang, J.; Zhong, Q. A NiFe-based monolithic electrocatalyst for pleiotropic-efficiency water oxidation. J. Mater. Chem. A 2022, 10, 24388–24397.

[69]

Hao, J. H.; Luo, W.; Wang, S. S.; Zhao, K.; Hou, J. W.; Li, L. H.; Ge, B. X.; Yang, W. S.; Shi, W. D. Discharge-induced enhancement of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 20042–20048.

[70]

Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.

[71]

Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.

[72]

Han, Y. J.; Zeng, X.; Liu, Y. H.; Shi, S. Z.; Xiong, P.; Wang, T. Z.; Pan, X. M.; Li, J. H.; Hu, W. B.; Deng, Y. D. Crystalline-amorphous Ni4.5Fe4.5S8/NiFeS heterostructure for alkaline water oxidation electrocatalysis. Mater. Today Energy 2023, 38, 101442.

[73]

Shao, L.; Han, X. D.; Shi, L.; Wang, T. Z.; Zhang, Y. S.; Jiang, Z. Q.; Yin, Z. X.; Zheng, X. R.; Li, J. H.; Han, X. P. et al. In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis. Adv. Energy Mater. 2024, 14, 2303261

Nano Research
Pages 5985-5995
Cite this article:
Han Y, Shao L, Liu Y, et al. Sulfate-assisted Ni/Fe-based electrodes for anion exchange membrane saline splitting. Nano Research, 2024, 17(7): 5985-5995. https://doi.org/10.1007/s12274-024-6646-x
Topics:

528

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 28 January 2024
Revised: 08 March 2024
Accepted: 21 March 2024
Published: 25 April 2024
© Tsinghua University Press 2024
Return