Saline water electrolysis is an appealing strategy for hydrogen production, attracting more attention in recent years. NiFe-based electrodes exhibit promise as catalysts for saline water electrolysis. Nevertheless, they suffer from the inferior service life of the oxygen evolution reaction (OER). Herein, we report an oxygen-evolution electrode consisting of a sulfate-modulated nickel-iron hydroxide (NiFeOOH) affording as the catalytic active layer and Fe-Ni3S2 as the corrosion-proof layer. The developed electrode only requires overpotentials of 220 and 292 mV to deliver the current density of 10 and 500 mA·cm−2, respectively. More importantly, it presents long-term stability exceeding 140 and 100 h in 1 M KOH at high current densities of 500 and 1000 mA·cm−2, respectively, as well as 120 h for saline water electrolysis at 100 mA·cm−2. Experimental results reveal that the generated sulfate plays an indispensable role in improving stability and corrosion resistance. We assembled and tested an anion exchange membrane electrolyzer with Pt/C and NiFeS/NIF as the cathode and anode, respectively, under industrial conditions. This overall water-splitting electrolyzer achieves an impressive energy conversion efficiency of 75% ± 0.5%. This report offers fresh insights into the design of stable NiFe-based electrodes, which may further promote its practical applications for saline water electrolysis.
Deng, L. M.; Hung, S. F.; Zhao, S.; Zeng, W. J.; Lin, Z. Y.; Hu, F.; Xie, Y. Y.; Yin, L. J.; Li, L. L.; Peng, S. J. Unveiling coordination transformation for dynamically enhanced hydrogen evolution catalysis. Energy Environ. Sci. 2023, 16, 5220–5230.
Zhang, M. C.; Liu, Q. Q.; Sun, W. P.; Sun, K.; Shen, Y. C.; An, W.; Zhang, L.; Chen, H.; Zou, X. X. Nanostructured intermetallics: From rational synthesis to energy electrocatalysis. Chem. Synth. 2023, 3, 28.
Wang, T. Z.; Miao, L. C.; Zheng, S. Y.; Qin, H. Y.; Cao, X. J.; Yang, L.; Jiao, L. F. Interfacial Engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catal. 2023, 13, 4091–4100.
Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.
Zhang, Z.; Li, X. P.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Han, X. P.; Hu, W. B. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 7245–7250.
Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.
Yu, D. S.; Hao, Y. X.; Han, S. L.; Zhao, S.; Zhou, Q. C.; Kuo, C. H.; Hu, F.; Li, L. L.; Chen, H. Y.; Ren, J. W. et al. Ultrafast combustion synthesis of robust and efficient electrocatalysts for high-current-density water oxidation. ACS Nano 2023, 17, 1701–1712.
Kim, H. J.; Kim, H. Y.; Joo, J.; Joo, S. H.; Lim, J. S.; Lee, J.; Huang, H. W.; Shao, M. H.; Hu, J.; Kim, J. Y. et al. Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. J. Mater. Chem. A 2022, 10, 50–88.
Hao, Y. X.; Hung, S. F.; Zeng, W. J.; Wang, Y.; Zhang, C. C.; Kuo, C. H.; Wang, L. Q.; Zhao, S.; Zhang, Y.; Chen, H. Y. et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 2023, 145, 23659–23669.
Liu, K. W.; Zhang, C. L.; Sun, Y. D.; Zhang, G. H.; Shen, X. C.; Zou, F.; Zhang, H. C.; Wu, Z. W.; Wegener, E. C.; Taubert, C. J. et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 2018, 12, 158–167.
Reith, L.; Hausmann, J. N.; Mebs, S.; Mondal, I.; Dau, H.; Driess, M.; Menezes, P. W. In situ detection of iron in oxidation states ≥ IV in cobalt-iron oxyhydroxide reconstructed during oxygen evolution reaction. Adv. Energy Mater. 2023, 13, 2203886
Zheng, X. R.; Cao, Y. H.; Wu, Z.; Ding, W. L.; Xue, T.; Wang, J. J.; Chen, Z. L.; Han, X. P.; Deng, Y. D.; Hu, W. B. Rational design and spontaneous sulfurization of NiCo-(oxy)Hydroxysulfides nanosheets with modulated local electronic configuration for enhancing oxygen electrocatalysis. Adv. Energy Mater. 2022, 12, 2103275.
Pei, X. Y.; Mu, Y.; Dong, X. Y.; Ding, C. T.; Xu, L. S.; Cui, M.; Meng, C. G.; Zhang, Y. F. Ion-change promoting Co nanoparticles@N-doped carbon framework on Co2SiO4/rGO support forming “double-triple-biscuit” structure boosts oxygen evolution reaction. Carbon Neutralization 2023, 2, 115–126.
Wang, T. Z.; Cao, X. J.; Jiao, L. F. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 2021, 1, 69–74.
He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W. J.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.
Zhao, S.; Hu, F.; Yin, L. J.; Li, L. L.; Peng, S. J. Manipulating electron redistribution induced by asymmetric coordination for electrocatalytic water oxidation at a high current density. Sci. Bull., 2023, 68, 1389–1398.
Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.
Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.
Liu, J. C.; Xu, S. M.; Li, Y. F.; Zhang, R. K.; Shao, M. F. Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater. Appl. Catal. B: Environ. 2020, 264, 118540.
Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.
Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962–972.
Dresp, S.; Dionigi, F.; Loos, S.; de Araujo, J. F.; Spöri, C.; Gliech, M.; Dau, H.; Strasser, P. Direct electrolytic splitting of seawater: Activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Adv. Energy Mater. 2018, 8, 1800338.
Li, J. H.; Liu, Y. P.; Chen, H.; Zhang, Z. K.; Zou, X. X. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 2021, 31, 2101820.
Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.
Zhang, L. Y.; Wang, Z. Y.; Qiu, J. S. Energy-saving hydrogen production by seawater electrolysis coupling sulfion degradation. Adv. Mater. 2022, 34, 2109321.
Wang, S. H.; Yang, P.; Sun, X. F.; Xing, H. L.; Hu, J.; Chen, P.; Cui, Z. T.; Zhu, W. K.; Ma, Z. J. Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl. Catal. B: Environ. 2021, 297, 120386.
Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. MnO x /IrO x as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270–10281.
Xu, Y. S.; Lv, H. H.; Lu, H. S.; Quan, Q. H.; Li, W. Z.; Cui, X. J.; Liu, G. B.; Jiang, L. H. Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy 2022, 98, 107295.
Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
Chang, J. F.; Wang, G. Z.; Yang, Z. Z.; Li, B. Y.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y. G.; Wang, G. F. et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.
Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.
Tan, L.; Yu, J. T.; Wang, C.; Wang, H. F.; Liu, X. E.; Gao, H. T.; Xin, L. T.; Liu, D. Z.; Hou, W. G.; Zhan, T. R. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv. Funct. Mater. 2022, 32, 2200951.
Lee, S. A.; Kim, J.; Kwon, K. C.; Park, S. H.; Jang, H. W. Anion exchange membrane water electrolysis for sustainable large-scale hydrogen production. Carbon Neutralization 2022, 1, 26–48.
Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.
Xu, Q. C.; Chu, M. S.; Liu, M. M.; Zhang, J. H.; Jiang, H.; Li, C. Z. Fluorine-triggered surface reconstruction of Ni3S2 electrocatalysts towards enhanced water oxidation. Chem. Eng. J. 2021, 411, 128488.
Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431–5441.
Wang, C. Z.; Zhu, M. Z.; Cao, Z. Y.; Zhu, P.; Cao, Y. Q.; Xu, X. Y.; Xu, C. X.; Yin, Z. Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B: Environ. 2021, 291, 120071.
Dong, B.; Zhao, X.; Han, G. Q.; Li, X.; Shang, X.; Liu, Y. R.; Hu, W. H.; Chai, Y. M.; Zhao, H.; Liu, C. G. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 13499–13508.
Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; de Arquer, F. P. G.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.
Wu, C. C.; Li, H. Q.; Xia, Z. X.; Zhang, X. M.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction. ACS Catal. 2020, 10, 11127–11135.
Li, D. R.; Wan, W. J.; Wang, Z. W.; Wu, H. Y.; Wu, S. X.; Jiang, T.; Cai, G. X.; Jiang, C. Z.; Ren, F. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv. Energy Mater. 2022, 12, 2201913.
Zhang, J. T.; Yu, L.; Chen, Y.; Lu, X. F.; Gao, S. Y.; Lou, X. W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 2020, 32, 1906432.
Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.
Zhang, J. F.; Zhang, H. J.; Huang, Y. Electron-rich NiFe layered double hydroxides via interface engineering for boosting electrocatalytic oxygen evolution. Appl. Catal. B: Environ. 2021, 297, 120453.
Qin, J. F.; Yang, M.; Hou, S.; Dong, B.; Chen, T. S.; Ma, X.; Xie, J. Y.; Zhou, Y. N.; Nan, J.; Chai, Y. M. Copper and cobalt co-doped Ni3S2 grown on nickel foam for highly efficient oxygen evolution reaction. Appl. Surf. Sci. 2020, 502, 144172.
He, W. J.; Ren, G.; Li, Y.; Jia, D. B.; Li, S. Y.; Cheng, J. N.; Liu, C. C.; Hao, Q. Y.; Zhang, J.; Liu, H. Amorphous nickel-iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction. Catal. Sci. Technol. 2020, 10, 1708–1713.
Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.
Zhu, W. X.; Yue, X. Y.; Zhang, W. T.; Yu, S. X.; Zhang, Y. H.; Wang, J.; Wang, J. L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489.
Yang, Y.; Zhu, B.; Guo, P. F.; Wang, W. J.; Wang, W. T.; Wang, K.; He, Z. H.; Liu, Z. T. Core–shell trimetallic NiFeV disulfides and amorphous high-valance NiFe hydroxide nanosheets enhancing oxygen evolution reaction. Chem. Eng. J. 2022, 430, 133047.
Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.
Qiao, H. Y.; Yong, J. X.; Dai, X. P.; Zhang, X.; Ma, Y. D.; Liu, M. Z.; Luan, X. B.; Cai, J. C.; Yang, Y.; Zhao, H. H. et al. Hollow FeNi-based hybrid polyhedron derived from unique sulfur-modulating coordinated transition bimetal complexes for efficient oxygen evolution reactions. J. Mater. Chem. A 2017, 5, 21320–21327.
Yang, Y. Y.; Meng, H. X.; Kong, C.; Yan, S. H.; Ma, W. X.; Zhu, H.; Ma, F. Q.; Wang, C. J.; Hu, Z. A. Heterogeneous Ni3S2@FeNi2S4@NF nanosheet arrays directly used as high efficiency bifunctional electrocatalyst for water decomposition. J. Colloid Interface Sci. 2021, 599, 300–312.
Zhou, J. Q.; Yu, L.; Zhu, Q. C.; Huang, C. Q.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core–shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18118–18125.
Zhang, D. L.; Mou, H. Y.; Chen, L.; Xing, G.; Wang, D. B.; Song, C. X. Surface/interface engineering N-doped carbon/NiS2 nanosheets for efficient electrocatalytic H2O splitting. Nanoscale 2020, 12, 3370–3376.
Ning, M. H.; Zhang, F. H.; Wu, L. B.; Xing, X. X.; Wang, D. Z.; Song, S. W.; Zhou, Q. C.; Yu, L.; Bao, J. M.; Chen, S. et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 2022, 15, 3945–3957.
Tang, L. N.; Fan, T. T.; Chen, Z.; Tian, J. L.; Guo, H. Q.; Peng, M. L.; Zuo, F.; Fu, X. Z.; Li, M.; Bu, Y. F. et al. Binary-dopant promoted lattice oxygen participation in OER on cobaltate electrocatalyst. Chem. Eng. J. 2021, 417, 129324.
Parvez, S.; Fu, Y.; Li, J. Y.; Long, M. J. C.; Lin, H. Y.; Lee, D. K.; Hu, G. S.; Aye, Y. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response. J. Am. Chem. Soc. 2015, 137, 10–13.
Mabayoje, O.; Shoola, A.; Wygant, B. R.; Mullins, C. B. The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 2016, 1, 195–201.
Wang, Y.; Li, X. P.; Huang, Z.; Wang, H. Z.; Chen, Z. L.; Zhang, J. F.; Zheng, X. R.; Deng, Y. D.; Hu, W. B. Amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew. Chem., Int. Ed. 2023, 62, e202215256.
Cheng, Z.; Wang, J. H.; Choi, Y. M.; Yang, L.; Lin, M. C.; Liu, M. L. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 2011, 4, 4380–4409.
Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639–2645.
Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.
Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.
Chala, S. A.; Tsai, M. C.; Olbasa, B. W.; Lakshmanan, K.; Huang, W. H.; Su, W. N.; Liao, Y. F.; Lee, J. F.; Dai, H. J.; Hwang, B. J. Tuning dynamically formed active phases and catalytic mechanisms of in situ electrochemically activated layered double hydroxide for oxygen evolution reaction. ACS Nano 2021, 15, 14996–15006.
Wu, Y. J.; Yang, J.; Tu, T. X.; Li, W. Q.; Zhang, P. F.; Zhou, Y.; Li, J. F.; Li, J. T.; Sun, S. G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew. Chem., Int. Ed. 2021, 60, 26829–26836.
Zheng, Z. J.; Gao, Y.; Gui, Y.; Zhu, M. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros. Sci. 2012, 54, 60–67.
Zou, C. J.; Li, Z. F.; Wang, C. X.; Hong, J. B.; Chen, J.; Zhong, S. W. Facile electrodeposition route for the fabrication of Ni/Ni(OH)2 nanocomposite films with different supporting electrolytes and their electrochemical properties. Chem. Phys. Lett. 2022, 793, 139471.
Li, Y. T.; Ma, W. H.; Wang, J.; Zhong, Q. A NiFe-based monolithic electrocatalyst for pleiotropic-efficiency water oxidation. J. Mater. Chem. A 2022, 10, 24388–24397.
Hao, J. H.; Luo, W.; Wang, S. S.; Zhao, K.; Hou, J. W.; Li, L. H.; Ge, B. X.; Yang, W. S.; Shi, W. D. Discharge-induced enhancement of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 20042–20048.
Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.
Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.
Han, Y. J.; Zeng, X.; Liu, Y. H.; Shi, S. Z.; Xiong, P.; Wang, T. Z.; Pan, X. M.; Li, J. H.; Hu, W. B.; Deng, Y. D. Crystalline-amorphous Ni4.5Fe4.5S8/NiFeS heterostructure for alkaline water oxidation electrocatalysis. Mater. Today Energy 2023, 38, 101442.
Shao, L.; Han, X. D.; Shi, L.; Wang, T. Z.; Zhang, Y. S.; Jiang, Z. Q.; Yin, Z. X.; Zheng, X. R.; Li, J. H.; Han, X. P. et al. In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis. Adv. Energy Mater. 2024, 14, 2303261