AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Materials design and preparation of ultrathin two-dimensional metal halide perovskites

Xiaomin Zhang§Sihan Zhao§Junran Zhang( )Lin Wang( )
School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials, Key Laboratory of Flexible Electronics, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China

§ Xiaomin Zhang and Sihan Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

This review presents a comprehensive and current overview of the groundbreaking advancements in the captivating realm of ultrathin metal halide perovskites and their associated heterostructures, with a specific emphasis on materials design and preparation strategy.

Abstract

Metal halide perovskites (MHPs) have emerged as highly promising candidates for the next generation of photonics and optoelectronic devices, owing to their prominent optical and excitonic properties, as well as the convenience of fabrication. Particularly, ultrathin two-dimensional (2D) MHPs, which are generally prepared by exfoliation, solution growth, and chemical vapor deposition method, have attracted dramatically increasing attentions owing to their combined features of ultrathin 2D morphology and superior performance of MHPs. Despite the growing interest in ultrathin 2D MHPs, there is currently a lack of a comprehensive and systematic overview of the distinct advantages offered by each growth method for producing these materials. This review critically assesses the preliminary studies on the materials design and preparation of ultrathin MHPs. Furthermore, it explores heterostructures based on ultrathin MHPs and offers insights into the challenges and opportunities that lie ahead for this enticing class of 2D materials.

References

[1]

Chen, K.; Zhang, Q. P.; Liang, Y.; Song, J. P.; Li, C.; Chen, S.; Li, F.; Zhang, Q. Quasi-two dimensional Ruddlesden–Popper halide perovskites for laser applications. Front. Phys. 2024, 19, 23502.

[2]

Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

[3]

Gu, L.; Ran, C. X.; Chao, L. F.; Bao, Y. Q.; Hui, W.; Wang, Y.; Chen, Y. H.; Gao, X. Y.; Song, L. Designing ionic liquids as the solvent for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 22870–22878.

[4]

Chen, Q.; Ma, T. T.; Wang, F. F.; Liu, Y.; Liu, S. Z.; Wang, J. G.; Cheng, Z. C.; Chang, Q.; Yang, R.; Huang, W. C. et al. Rapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaics. Adv. Sci. 2020, 7, 2000480.

[5]

Song, X. F.; Yin, H.; Chang, Q.; Qian, Y. C.; Lyu, C. G.; Min, H. H.; Zong, X. R.; Liu, C.; Fang, Y. Y.; Cheng, Z. C. et al. One-dimensional (NH=CINH3)3PbI5 perovskite for ultralow power consumption resistive memory. Research 2021, 2021, 9760729.

[6]

Liu, Y.; Wang, J. G.; Wang, F. F.; Cheng, Z. C.; Fang, Y. Y.; Chang, Q.; Zhu, J. X.; Wang, L.; Wang, J. P.; Huang, W. et al. Full-frame and high-contrast smart windows from halide-exchanged perovskites. Nat. Commun. 2021, 12, 3360.

[7]

Yuan, J. Y.; Zhou, D. W.; Zhuang, C.; Zhou, Y.; Zhang, C. F.; Wang, L.; Xiao, M.; Wang, X. Y. Single-photon emission from single microplate MAPbI3 nanocrystals with ultranarrow photoluminescence linewidths and exciton fine structures. Adv. Opt. Mater. 2022, 10, 2200606.

[8]

Xu, Y.; Cao, M. H.; Huang, S. M. Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals. Nano Res. 2021, 14, 3773–3794.

[9]

Wang, S. Y.; Liu, X. X.; Xu, M. S.; Liu, L. W.; Yang, D. R.; Zhou, P. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 2022, 21, 1225–1239.

[10]

Bian, R. J.; Li, C. C.; Liu, Q.; Cao, G. M.; Fu, Q. D.; Meng, P.; Zhou, J. D.; Liu, F. C.; Liu, Z. Recent progress in the synthesis of novel two-dimensional van der Waals materials. Natl. Sci. Rev. 2022, 9, nwab164.

[11]

Guo, H. W.; Hu, Z.; Liu, Z. B.; Tian, J. G. Stacking of 2D materials. Adv. Funct. Mater. 2020, 31, 2007810.

[12]

Chen, X. L.; Zhou, Z. S.; Deng, B. C.; Wu, Z. F.; Xia, F. N.; Cao, Y.; Zhang, L.; Huang, W.; Wang, N.; Wang, L. Electrically tunable physical properties of two-dimensional materials. Nano Today 2019, 27, 99–119.

[13]

Xie, H. G.; Liu, C.; Hu, H. M.; Yin, H.; Zhong, J. X.; Zong, X. R.; Jiang, X. H.; Zhang, J. R.; Wang, W.; Tao, Y. et al. Evolutional photoluminescence property in ultraviolet-ozone-treated monolayer MoS2. Appl. Surf. Sci. 2021, 545, 148809.

[14]

Zhang, J. R.; Song, X. F.; Wang, L.; Huang, W. Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics. Natl. Sci. Rev. 2022, 9, nwab129.

[15]

Ricciardulli, A. G.; Yang, S.; Smet, J. H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20, 1325–1336.

[16]

Leng, K.; Fu, W.; Liu, Y. P.; Chhowalla, M.; Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 2020, 5, 482–500.

[17]

Zhu, P. C.; Zhu, J. Low-dimensional metal halide perovskites and related optoelectronic applications. InfoMat 2020, 2, 341–378.

[18]

Shi, E. Z.; Gao, Y.; Finkenauer, B. P.; Akriti; Coffey, A. H.; Dou, L. T. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 2018, 47, 6046–6072.

[19]

Xu, M. F.; Jin, Y. L.; Xu, T.; Wang, C. N.; Zhai, Z. C. Ultrathin perovskite based solar cells with the efficiency enhanced by charge transfer process. Org. Electron. 2021, 89, 106025.

[20]

Yang, D.; Zou, Y. T.; Li, P. L.; Liu, Q. P.; Wu, L. Z.; Hu, H. C.; Xu, Y.; Sun, B. Q.; Zhang, Q.; Lee, S. T. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy 2018, 47, 235–242.

[21]

Fu, X. W.; Jiao, S. L.; Jiang, Y.; Li, L. H.; Wang, X. X.; Zhu, C. G.; Ma, C.; Zhao, H. P.; Xu, Z. Y.; Liu, Y. et al. Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 2884–2891.

[22]

Zhu, L. J.; Zhang, H. Y.; Lu, Q. P.; Wang, Y.; Deng, Z. B.; Hu, Y. F.; Lou, Z. D.; Cui, Q. H.; Hou, Y. B.; Teng, F. Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors. J. Mater. Chem. C 2018, 6, 3945–3950.

[23]

Long, M. Z.; Chen, Z. F.; Zhang, T. K.; Xiao, Y. B.; Zeng, X. L.; Chen, J.; Yan, K. Y.; Xu, J. B. Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection. Nanoscale 2016, 8, 6290–6299.

[24]

Liu, G. D.; Jia, S. T.; Wang, J.; Li, Y. F.; Yang, H.; Wang, S. F.; Gong, Q. H. Toward microlasers with artificial structure based on single-crystal ultrathin perovskite films. Nano Lett. 2021, 21, 8650–8656.

[25]

Pan, D. X.; Fu, Y. P.; Spitha, N.; Zhao, Y. Z.; Roy, C. R.; Morrow, D. J.; Kohler, D. D.; Wright, J. C.; Jin, S. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 2021, 16, 159–165.

[26]

Chen, Y. Y.; Liu, Z. Y.; Li, J. Z.; Cheng, X.; Ma, J. Q.; Wang, H. Z.; Li, D. H. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 10258–10264.

[27]

Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

[28]

Zhu, Z. H.; Zhu, C.; Yang, L.; Chen, Q.; Zhang, L. H.; Dai, J.; Cao, J. C.; Zeng, S. Y.; Wang, Z. Y.; Wang, Z. W. et al. Room-temperature epitaxial welding of 3D and 2D perovskites. Nat. Mater. 2022, 21, 1042–1049.

[29]

Zhang, X. M.; Shi, L.; Bai, J. Y.; Wang, F. J.; Jiang, M. W. Heterointerface engineering of perovskite defects and energetics for light-emitting diodes. Nano Res. 2023, 16, 5525–5532.

[30]

Li, Q.; Wang, Z. Y.; Ma, J. J.; Han, M. Q.; Gao, P.; Cai, M.; Zhang, Y. Q.; Song, Y. L.; Peng, S. Unveiling the surface-interface properties of perovskite crystals and pivotal regulation strategies. Nano Res. 2024, 17, 3950–3981

[31]

Niu, W.; Eiden, A.; Prakash, G. V.; Baumberg, J. J. Exfoliation of self-assembled 2D organic–inorganic perovskite semiconductors. Appl. Phys. Lett. 2014, 104, 171111.

[32]

Hintermayr, V. A.; Richter, A. F.; Ehrat, F.; Döblinger, M.; Vanderlinden, W.; Sichert, J. A.; Tong, Y.; Polavarapu, L.; Feldmann, J.; Urban, A. S. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Adv. Mater. 2016, 28, 9478–9485.

[33]

Leng, K.; Abdelwahab, I.; Verzhbitskiy, I.; Telychko, M.; Chu, L. Q.; Fu, W.; Chi, X.; Guo, N.; Chen, Z. H.; Chen, Z. X. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 2018, 17, 908–914.

[34]

Xie, M. L.; Liu, H.; Chun, F. J.; Deng, W.; Luo, C.; Zhu, Z. H.; Yang, M.; Li, Y. M.; Li, W.; Yan, W. et al. Aqueous phase exfoliating quasi-2D CsPbBr3 nanosheets with ultrahigh intrinsic water stability. Small 2019, 15, 1901994.

[35]

Li, L. Y.; Yu, Y. T.; Li, P.; Liu, J. X.; Liang, L. H.; Wang, L. Y.; Ding, Y.; Han, X. C.; Ji, J. M.; Chen, S. L. et al. The universal growth of ultrathin perovskite single crystals. Adv. Mater. 2022, 34, 2108396.

[36]

Li, L. T.; Yao, J. J.; Zhu, J. T.; Chen, Y.; Wang, C.; Zhou, Z. C.; Zhao, G. X.; Zhang, S. H.; Wang, R. N.; Li, J. T. et al. Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite. Nat. Commun. 2023, 14, 3764.

[37]

Liao, M. Q.; Xia, M. L.; Xu, Y. S.; Lu, P.; Niu, G. D. Growth mechanism of metal halide perovskite single crystals in solution. Chem. Commun. 2023, 59, 8758–8768.

[38]

Yuan, J. X.; Zhang, X. M.; Zhou, D. W.; Ge, F. X.; Zhong, J. X.; Zhao, S. H.; Ou, Z. W.; Zhan, G. X.; Zhang, X.; Li, C. Z. et al. Excessive iodine enabled ultrathin inorganic perovskite growth at the liquid–air interface. Angew. Chem., Int. Ed. 2023, 62, e202218546.

[39]

Chen, Z. Z.; Wang, Y. P.; Sun, X.; Guo, Y. W.; Hu, Y.; Wertz, E.; Wang, X.; Gao, H. W.; Lu, T. M.; Shi, J. van der Waals hybrid perovskite of high optical quality by chemical vapor deposition. Adv. Opt. Mater. 2017, 5, 1700373.

[40]

Zheng, Z.; Wang, X. X.; Shen, Y. W.; Luo, Z. Y.; Li, L. G.; Gan, L.; Ma, Y.; Li, H. Q.; Pan, A. L.; Zhai, T. Y. Space-confined synthesis of 2D all-inorganic CsPbI3 perovskite nanosheets for multiphoton-pumped lasing. Adv. Opt. Mater. 2018, 6, 1800879.

[41]

Liang, J.; Fang, Q. Y.; Wang, H.; Xu, R.; Jia, S.; Guan, Y. X.; Ai, Q.; Gao, G. H.; Guo, H.; Shen, K. J. et al. Perovskite-derivative valleytronics. Adv. Mater. 2020, 32, 2004111.

[42]

Wang, S. Z.; Amin, A. A. Y.; Wu, L. Z.; Cao, M. H.; Zhang, Q.; Ameri, T. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications. Small Struct. 2021, 2, 2000124.

[43]

Xiang, Y.; Mo, X. D.; Li, X.; Huang, K. Q.; He, P.; Dai, G. Z.; Yang, J. L. Progress on growth of metal halide perovskites by vapor-phase synthesis and their applications. J. Phys. D Appl. Phys. 2021, 55, 073001.

[44]

Liu, J. Y.; Xue, Y. Z.; Wang, Z. Y.; Xu, Z. Q.; Zheng, C. X.; Weber, B.; Song, J. C.; Wang, Y. S.; Lu, Y. R.; Zhang, Y. P. et al. Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 2016, 10, 3536–3542.

[45]

Chen, J. N.; Wang, Y. G.; Gan, L.; He, Y. B.; Li, H. Q.; Zhai, T. Y. Generalized self-doping engineering towards ultrathin and large-sized two-dimensional homologous perovskites. Angew. Chem., Int. Ed. 2017, 56, 14893–14897.

[46]

Sun, Y.; Yin, Y.; Pols, M.; Zhong, J. X.; Huang, Z.; Liu, B. W.; Liu, J. Q.; Wang, W.; Xie, H. G.; Zhan, G. X. et al. Engineering the phases and heterostructures of ultrathin hybrid perovskite nanosheets. Adv. Mater. 2020, 32, 2002392.

[47]

Zhong, J. X.; Sun, Y.; Liu, B. W.; Zhu, C.; Cao, Y.; Sun, E. C.; He, K. Y.; Zhang, W.; Liao, K.; Wang, X. Y. et al. Thickness dependent properties of ultrathin perovskite nanosheets with Ruddlesden–Popper-like atomic stackings. Nanoscale 2021, 13, 18961–18966.

[48]

Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. N. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

[49]

Fang, F. E.; Li, H. N.; Fang, S. F.; Zhou, B.; Huang, F.; Ma, C.; Wan, Y.; Jiang, S. C.; Wang, Y.; Tian, B. B. et al. 2D Cs2AgBiBr6 with boosted light–matter interaction for high-performance photodetectors. Adv. Opt. Mater. 2021, 9, 2001930.

[50]

Pham, P. V.; Bodepudi, S. C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. F. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514–6613

[51]

Wang, S. L.; Yang, F.; Zhu, J. R.; Cao, Q. X.; Zhong, Y. G.; Wang, A. C.; Du, W. N.; Liu, X. F. Growth of metal halide perovskite materials. Sci. China Mater. 2020, 63, 1438–1463.

[52]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[53]

Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R. et al. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 022001.

[54]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[55]

Islam, M. A.; Serles, P.; Kumral, B.; Demingos, P. G.; Qureshi, T.; Meiyazhagan, A.; Puthirath, A. B.; Abdullah, M. S. B.; Faysal, S. R.; Ajayan, P. M. et al. Exfoliation mechanisms of 2D materials and their applications. Appl. Phys. Rev. 2022, 9, 041301.

[56]

Li, Y. G.; Kuang, G. Z.; Jiao, Z. J.; Yao, L.; Duan, R. H. Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides. Mater. Res. Express. 2022, 9, 122001.

[57]

Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; Van der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic–inorganic perovskite crystals. Phys. Rev. B 2015, 92, 045414.

[58]

Lan, C. Y.; Zhou, Z. Y.; Wei, R. J.; Ho, J. C. Two-dimensional perovskite materials: From synthesis to energy-related applications. Mater. Today Energy 2019, 11, 61–82.

[59]

Zheng, Z.; Hu, Q. S.; Zhou, H. Z.; Luo, P.; Nie, A. M.; Zhu, H. M.; Gan, L.; Zhuge, F. W.; Ma, Y.; Song, H. S. et al. Submillimeter and lead-free Cs3Sb2Br9 perovskite nanoflakes: Inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz. 2019, 4, 1372–1379.

[60]

Zhang, Q.; Chu, L. Q.; Zhou, F.; Ji, W.; Eda, G. Excitonic properties of chemically synthesized 2D organic–inorganic hybrid perovskite nanosheets. Adv. Mater. 2018, 30, 1704055.

[61]

Chen, J. N.; Gan, L.; Zhuge, F. W.; Li, H. Q.; Song, J. Z.; Zeng, H. B.; Zhai, T. Y. A ternary solvent method for large-sized two-dimensional Perovskites. Angew. Chem. 2017, 129, 2430–2434.

[62]

Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.

[63]

Otero-Martínez, C.; García-Lojo, D.; Pastoriza-Santos, I.; Pérez-Juste, J.; Polavarapu, L. Dimensionality control of inorganic and hybrid perovskite nanocrystals by reaction temperature: From no-confinement to 3D and 1D quantum confinement. Angew. Chem., Int. Ed. 2021, 60, 26677–26684.

[64]

Chen, Y. X.; Ge, Q. Q.; Shi, Y.; Liu, J.; Xue, D. J.; Ma, J. Y.; Ding, J.; Yan, H. J.; Hu, J. S.; Wan, L. J. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 2016, 138, 16196–16199.

[65]

Zhumekenov, A. A.; Burlakov, V. M.; Saidaminov, M. I.; Alofi, A.; Haque, M. A.; Turedi, B.; Davaasuren, B.; Dursun, I.; Cho, N.; El-Zohry, A. M. et al. The role of surface tension in the crystallization of metal halide perovskites. ACS Energy Lett. 2017, 2, 1782–1788.

[66]

Sasaki, K.; Uchida, Y.; Nishiyama, N. Bottom-up synthesis of nanosheets at various interfaces. ChemPlusChem 2023, 88, e202300255.

[67]

Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

[68]

Zhang, J. S.; Shum, P. P.; Su, L. A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications. Nano Res. 2022, 15, 7402–7431.

[69]

Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

[70]

Jing, H.; Peng, R. W.; Ma, R. M.; He, J.; Zhou, Y.; Yang, Z. Q.; Li, C. Y.; Liu, Y.; Guo, X. J.; Zhu, Y. Y. et al. Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett. 2020, 20, 7144–7151.

[71]
Ariga, K. Liquid–liquid interfacial nanoarchitectonics. Small, in press, https://doi.org/10.1002/smll.202305636.
[72]

Xu, W. C.; Wei, X. F.; Zheng, D. Y.; Huang, W. J.; Li, P. P.; Chen, Y. D.; Meng, F. C.; Liu, J. H. Biphasic liquid–liquid interface limit architecture of high-quality perovskite single-crystal sheets for UV photodetection. J. Phys. Chem. Lett. 2021, 12, 10052–10059.

[73]

Zhu, W. G.; Shen, J. H.; Li, M. X.; Yang, K.; Bu, W.; Sun, Y. Y.; Shi, J.; Lian, J. Kinetically controlled growth of sub-millimeter 2D Cs2SnI6 nanosheets at the liquid–liquid interface. Small 2021, 17, 2006279.

[74]

Wang, L. H.; Sahabudeen, H.; Zhang, T.; Dong, R. H. Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers. Npj 2D Mater. Appl. 2018, 2, 26.

[75]

Ha, S. T.; Liu, X. F.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q. H. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2014, 2, 838–844.

[76]

Wang, Y. P.; Shi, Y. F.; Xin, G. Q.; Lian, J.; Shi, J. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 2015, 15, 4741–4749.

[77]

Chen, J.; Fu, Y. P.; Samad, L.; Dang, L. N.; Zhao, Y. Z.; Shen, S. H.; Guo, L. J.; Jin, S. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2017, 17, 460–466.

[78]

Mi, Y.; Liu, Z. X.; Shang, Q. Y.; Niu, X. X.; Shi, J.; Zhang, S.; Chen, J.; Du, W. N.; Wu, Z. Y.; Wang, R. et al. Fabry–Pérot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities. Small 2018, 14, 1703136.

[79]

Huo, C. X.; Liu, X. H.; Song, X. F.; Wang, Z. M.; Zeng, H. B. Field-effect transistors based on van-der-Waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets. J. Phys. Chem. Lett. 2017, 8, 4785–4792.

[80]

Wang, Y. P.; Sun, X.; Shivanna, R.; Yang, Y. B.; Chen, Z. Z.; Guo, Y. W.; Wang, G. C.; Wertz, E.; Deschler, F.; Cai, Z. H. et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 Arrays. Nano Lett. 2016, 16, 7974–7981.

[81]

Tavakoli, M. M.; Gu, L. L.; Gao, Y.; Reckmeier, C.; He, J.; Rogach, A. L.; Yao, Y.; Fan, Z. Y. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 2015, 5, 14083.

[82]

Li, P. F.; Shivananju, B. N.; Zhang, Y. P.; Li, S. J.; Bao, Q. L. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. J. Phys. D: Appl. Phys. 2017, 50, 094002.

[83]

Wen, X. M.; Chen, W. J.; Yang, J. F.; Ou, Q. D.; Yang, T. S.; Zhou, C. H.; Lin, H.; Wang, Z. Y.; Zhang, Y. P.; Conibeer, G. et al. Role of surface recombination in halide perovskite nanoplatelets. ACS Appl. Mater. Interfaces 2018, 10, 31586–31593.

[84]

Sun, Y.; Zhou, Z. S.; Huang, Z.; Wu, J. B.; Zhou, L. J.; Cheng, Y.; Liu, J. Q.; Zhu, C.; Yu, M. T.; Yu, P. et al. Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. Adv. Mater. 2019, 31, 1806562.

[85]

Huang, Z.; Sun, Y.; Zhang, Z.; Zhou, Z. S.; Liu, B. W.; Zhong, J. X.; Zhang, W.; Ouyang, G.; Zhang, J. R.; Wang, L. et al. Tunable excitonic properties in two-dimensional heterostructures based on solution-processed PbI2 flakes. J. Mater. Sci. 2020, 55, 10656–10667.

[86]

Niu, L.; Zeng, Q. S.; Shi, J.; Cong, C. X.; Wu, C. Y.; Liu, F. C.; Zhou, J. D.; Fu, W.; Fu, Q. D.; Jin, C. H. et. al. Controlled growth and reliable thickness-dependent properties of organic–inorganic perovskite platelet crystal. Adv. Funct. Mater. 2016, 26, 5263–5270.

[87]

Zhou, D. W.; Zhao, P. Y.; Zhang, J. R.; Jiang, X. H.; Qin, S. C.; Zhang, X.; Jiang, R.; Deng, Y. F.; Jiang, H. J.; Zhan, G. X. et al. Lithographic multicolor patterning on hybrid perovskites for nano-optoelectronic applications. Small 2022, 18, 2205227.

[88]

Nian, L. Y.; Sun, H. Y.; Wang, Z. C.; Xu, D.; Hao, B.; Yan, S. J.; Li, Y. Y.; Zhou, J.; Deng, Y.; Hao, Y. F. et al. Sr4Al2O7: A new sacrificial layer with high water dissolution rate for the synthesis of freestanding oxide membranes. Adv. Mater. 2024, 36, 2307682

[89]

Kowarik, S.; Gerlach, A.; Schreiber, F. Organic molecular beam deposition: Fundamentals, growth dynamics, and in situ studies. J. Phys. Condens. Matter 2008, 20, 184005.

[90]

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

[91]

Wang, C.; Xiao, J. W.; Yan, Z. G.; Niu, X. W.; Lin, T. F.; Zhou, Y. C.; Li, J. Y.; Han, X. D. Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Res. 2023, 16, 1703–1711.

[92]

Bouhjar, F.; Derbali, L.; Marí, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO: Co electron transport layer. Nano Res. 2020, 13, 2546–2555.

[93]

Jeong, D. N.; Lee, D. K.; Seo, S.; Lim, S. Y.; Zhang, Y.; Shin, H.; Cheong, H.; Park, N. G. Perovskite cluster-containing solution for scalable D-bar coating toward high-throughput perovskite solar cells. ACS Energy Lett. 2019, 4, 1189–1195.

[94]

Wang, H. Z.; Chen, Y. Y.; Li, D. H. Two/quasi-two-dimensional perovskite-based heterostructures: Construction, properties and applications. Int. J. Extrem. Manuf. 2023, 5, 012004.

[95]

Liu, C.; Pan, J.; Yuan, Q. H.; Zhu, C.; Liu, J. Q.; Ge, F. X.; Zhu, J. J.; Xie, H. T.; Zhou, D. W.; Zhang, Z. C. et al. Highly reliable van der Waals memory boosted by a single 2D charge trap medium. Adv. Mater. 2024, 36, 2305580.

[96]

Cheng, X. H.; Han, Y.; Cui, B. B. Fabrication strategies and optoelectronic applications of perovskite heterostructures. Adv. Opt. Mater. 2022, 10, 2102224.

[97]

Fang, Q. Y.; Shang, Q. Y.; Zhao, L. Y.; Wang, R.; Zhang, Z. P.; Yang, P. F.; Sui, X.; Qiu, X. H.; Liu, X. F.; Zhang, Q. et al. Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett. 2018, 9, 1655–1662.

[98]

Cheng, H. C.; Wang, G. M.; Li, D. H.; He, Q. Y.; Yin, A. X.; Liu, Y.; Wu, H.; Ding, M. N.; Huang, Y.; Duan, X. F. Van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 2016, 16, 367–373.

[99]

Wang, H. L.; Wang, X. D.; Chen, Y.; Zhang, S. K.; Jiang, W.; Zhang, X.; Qin, J. J.; Wang, J.; Li, X. G.; Pan, Y. Y. et al. Extremely low dark current MoS2 photodetector via 2D halide perovskite as the electron reservoir. Adv. Opt. Mater. 2020, 8, 1901402.

[100]

Zhang, Z. P.; Sun, F. F.; Zhu, Z. H.; Dai, J.; Gao, K.; Wei, Q.; Shi, X. T.; Sun, Q.; Yan, Y.; Li, H. et al. Unconventional solution-phase epitaxial growth of organic–inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Sci. China Mater. 2019, 62, 43–53.

[101]

Cao, Y.; Li, C. Z.; Deng, J.; Tong, T.; Qian, Y. C.; Zhan, G. X.; Zhang, X.; He, K. Y.; Ma, H. F.; Zhang, J. R. et al. Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite. Nano Res. 2022, 15, 7492–7497.

[102]

Tong, T.; Gan, Y. Q.; Li, W. S.; Zhang, W.; Song, H. Z.; Zhang, H. H.; Liao, K.; Deng, J.; Li, S.; Xing, Z. Y. et al. Boosting the sensitivity of WSe2 phototransistor via janus interfaces with 2D perovskite and ferroelectric layers. ACS Nano 2023, 17, 530–538.

[103]

Hu, Y. H.; Schlipf, J.; Wussler, M.; Petrus, M. L.; Jaegermann, W.; Bein, T.; Müller-Buschbaum, P.; Docampo, P. Hybrid perovskite/perovskite heterojunction solar cells. ACS Nano 2016, 10, 5999–6007.

[104]

Wang, J.; Li, J. Z.; Tan, Q. H.; Li, L.; Zhang, J. B.; Zang, J. F.; Tan, P. H.; Zhang, J.; Li, D. H. Controllable synthesis of two-dimensional Ruddlesden–Popper-type perovskite heterostructures. J. Phys. Chem. Lett. 2017, 8, 6211–6219.

[105]

Liu, Y. H.; Akin, S.; Pan, L. F.; Uchida, R.; Arora, N.; Milić, J. V.; Hinderhofer, A.; Schreiber, F.; Uhl, A. R.; Zakeeruddin, S. M. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 2019, 5, eaaw2543.

[106]

Zhan, G. X.; Zhang, J. R.; Zhang, L. H.; Ou, Z. W.; Yang, H. Y.; Qian, Y. C.; Zhang, X.; Xing, Z. Y.; Zhang, L.; Li, C. Z. et al. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites. Nano Lett. 2022, 22, 3961–3968.

[107]

Wang, Q. X.; Zhang, Q.; Luo, X.; Wang, J. Y.; Zhu, R.; Liang, Q. J.; Zhang, L.; Yong, J. Z.; Wong, C. P. Y.; Eda, G. et al. Optoelectronic properties of a van der Waals WS2 monolayer/2D Perovskite vertical heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 45235–45242.

[108]

Peng, B.; Yu, G. N.; Zhao, Y. W.; Xu, Q.; Xing, G. C.; Liu, X. F.; Fu, D. Y.; Liu, B.; Tan, J. R. S.; Tang, W. et al. Achieving ultrafast hole transfer at the monolayer MoS2 and CH3NH3PbI3 perovskite interface by defect engineering. ACS Nano 2016, 10, 6383–6391.

[109]

Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y. B.; Huang, J. S. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842–3867.

[110]

Solis de la Fuente, M.; Kaur, S.; Hu, Q.; Barnard, E. S.; Dudenas, P.; Kusoglu, A.; Russell, T. P.; Urban, J. J.; Prasher, R. Enhanced charge carrier transport in 2D perovskites by incorporating single-walled carbon nanotubes or graphene. ACS Energy Lett. 2020, 5, 109–116.

[111]

Zhang, Q.; Nan, H.; Zhou, Y. Y.; Gu, Y. C.; Tai, M. Q.; Wei, Y. X.; Hao, F.; Li, J. B.; Oron, D.; Lin, H. In situ growth of α-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. J. Mater. Chem. C 2019, 7, 6795–6804.

[112]

Qiu, L.; Si, G. Y.; Bao, X. Z.; Liu, J.; Guan, M. Y.; Wu, Y. W.; Qi, X.; Xing, G. C.; Dai, Z. G.; Bao, Q. L. et al. Interfacial engineering of halide perovskites and two-dimensional materials. Chem. Soc. Rev. 2023, 52, 212–247.

[113]

Peng, M. F.; Ma, Y. L.; Zhang, L.; Cong, S.; Hong, X. K.; Gu, Y. H.; Kuang, Y. W.; Liu, Y. S.; Wen, Z.; Sun, X. H. All-inorganic CsPbBr3 perovskite nanocrystals/2D non-layered cadmium sulfide selenide for high-performance photodetectors by energy band alignment engineering. Adv. Funct. Mater. 2021, 31, 2105051.

[114]

Niu, L.; Liu, X. F.; Cong, C. X.; Wu, C. Y.; Wu, D.; Chang, T. R.; Wang, H.; Zeng, Q. S.; Zhou, J. D.; Wang, X. L. et al. Controlled synthesis of organic/inorganic van der Waals solid for tunable light-matter interactions. Adv. Mater. 2015, 27, 7800–7808.

[115]

Su, W. H.; Zhang, S.; Liu, C.; Tian, Q. L.; Liu, X. Q.; Li, K. L.; Lv, Y. W.; Liao, L.; Zou, X. M. Interlayer transition induced infrared response in ReS2/2D perovskite van der Waals heterostructure photodetector. Nano Lett. 2022, 22, 10192–10199.

[116]

Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162–12174.

[117]

Liu, Z. X.; You, L.; Faraji, N.; Lin, C. H.; Xu, X. M.; He, J. H.; Seidel, J.; Wang, J. L.; Alshareef, H. N.; Wu, T. Single-crystal hybrid perovskite platelets on graphene: A mixed-dimensional van der Waals heterostructure with strong interface coupling. Adv. Funct. Mater. 2020, 30, 1909672.

[118]

Yang, T. F.; Wang, X.; Zheng, B. Y.; Qi, Z. Y.; Ma, C.; Fu, Y. H.; Fu, Y. P.; Hautzinger, M. P.; Jiang, Y.; Li, Z. W. et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 2019, 13, 7996–8003.

[119]

Xu, X. X.; Wang, X. Perovskite nano-heterojunctions: Synthesis, structures, properties, challenges, and prospects. Small Struct. 2020, 1, 2000009.

[120]

Hsiao, Y. W.; Cheng, B. S.; Hsu, H. C.; Wu, S. H.; Wu, H. T.; Leu, C. C.; Shih, C. F. Vertical-type 3D/Quasi-2D n-p heterojunction perovskite photodetector. Adv. Funct. Mater. 2023, 33, 2300169.

[121]

Li, S. X.; Xia, H.; Wang, L.; Sun, X. C.; An, Y.; Zhu, H.; Bai, B. F.; Sun, H. B. Self-powered and flexible photodetector with high polarization sensitivity based on MAPbBr3-MAPbI3 microwire lateral heterojunction. Adv. Funct. Mater. 2022, 32, 2206999.

[122]

Cao, F.; Li, Z. Q.; Liu, X. Y.; Shi, Z. F.; Fang, X. S. Air induced formation of Cs3Bi2Br9/Cs3BiBr6 bulk heterojunction and its dual-band photodetection abilities for light communication. Adv. Funct. Mater. 2022, 32, 2206151.

[123]

Singh, A.; Yuan, B.; Rahman, M. H.; Yang, H. J.; De, A.; Park, J. Y.; Zhang, S. C.; Huang, L. B.; Mannodi-Kanakkithodi, A.; Pennycook, T. J. et al. Two-dimensional halide Pb-perovskite–double perovskite epitaxial heterostructures. J. Am. Chem. Soc. 2023, 145, 19885–19893.

[124]

Wang, S. H.; Gu, Z. K.; Zhao, R. D.; Zhang, T.; Lou, Y. J.; Guo, L. T.; Su, M.; Li, L. H.; Zhang, Y. Q.; Song, Y. L. A general method for growth of perovskite single-crystal arrays for high performance photodetectors. Nano Res. 2022, 15, 6568–6573.

[125]

Yuan, Z. C.; Hu, Z. J.; Persson, I.; Wang, C. F.; Liu, X. J.; Kuang, C. Y.; Xu, W. D.; Bai, S.; Gao, F. Interface-assisted cation exchange enables high-performance perovskiteLEDs with tunable near-infrared emissions. Joule. 2022, 6, 2423–2436.

[126]

Fu, Y.; Yuan, M.; Zhao, Y. J.; Dong, M. Q.; Guo, Y. W.; Wang, K.; Jin, C. Q.; Feng, J. G.; Wu, Y. C.; Jiang, L. Gradient bandgap-tunable perovskite microwire arrays toward flexible color-cognitive devices. Adv. Funct. Mater. 2023, 33, 2214094.

[127]

Shen, L. N.; Song, P. Q.; Zheng, L. F.; Wang, L. P.; Zhang, X. G.; Liu, K. K.; Liang, Y. M.; Tian, W. J.; Luo, Y. J.; Qiu, J. H. et al. Ion-diffusion management enables all-interface defect passivation of perovskite solar cells. Adv. Mater. 2023, 35, 2301624.

[128]

Qiu, F. Z.; Cheng, H. L.; Mao, P.; Bi, W. H.; Xing, S.; Wang, B.; Zhong, Y. F. Unifying crystal growth and defect passivation in photovoltaic perovskites: The impact of molecular coordinating strength. ACS Energy Lett. 2024, 9, 1115–1124.

[129]
Shao, H.; Li, Y. Q.; Chen, J. F.; Yang, W.; Wang, L.; Fu, J. W.; Wang, Y. R.; Ling, H. F.; Xie, L. H.; Huang, W. Mimicking evasive behavior in wavelength-dependent reconfigurable phototransistors with ultralow power consumption. SmartMat., in press, https://doi.org/10.1002/smm2.1230.
[130]

Kim, J.; Chu, Y. H.; Park, J.; Bang, K.; Yoon, S.; Park, S.; Park, K.; Kwon, J.; Kim, N.; Yoon, K. T. et al. Spectrally stable deep-blue light-emitting diodes based on layer-transferred single-crystalline Ruddlesden–Popper halide perovskites. ACS Appl. Mater. Interfaces 2024, 16, 6274–6283.

[131]

Lai, H. J.; Lu, Z. L.; Lu, Y. H.; Yao, X. C.; Xu, X.; Chen, J.; Zhou, Y.; Liu, P. Y.; Shi, T. T.; Wang, X. M. et al. Fast, multi-bit, and vis-infrared broadband nonvolatile optoelectronic memory with MoS2/2D-perovskite van der Waals heterojunction. Adv. Mater. 2023, 35, 2208664.

[132]

Zhao, L. Y.; Gao, Y.; Su, M.; Shang, Q. Y.; Liu, Z.; Li, Q.; Wei, Q.; Li, M. L.; Fu, L.; Zhong, Y. G. et al. Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: Toward integrated optoelectronic applications. ACS Nano 2019, 13, 10085–10094.

[133]

Li, G. H.; Hou, Z.; Wei, Y. F.; Zhao, R. F.; Ji, T.; Wang, W. Y.; Wen, R.; Zheng, K. B.; Yu, S. W.; Cui, Y. X. Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate. Sci. China Mater. 2023, 66, 2400–2407.

[134]

Zheng, Z.; Li, H. Y.; Hai, L.; Ma, R. Q.; Liu, R.; Zhai, C. P.; Sun, Z. D.; Wang, F.; Ma, Y.; Xie, Q. G. et al. Silver ions assisted inversion temperature crystallization of 2D Cs3Bi2Br9 nanoflakes for highly sensitive X-ray detection. Adv. Funct. Mater. 2024, 34, 2307093.

[135]

Zhang, F. L.; Fan, J. B.; Wang, S. T. Interfacial polymerization: From chemistry to functional materials. Angew. Chem., Int. Ed. 2020, 59, 21840–21856.

[136]

Ham, A.; Kim, T. S.; Kang, M.; Cho, H.; Kang, K. Strategies for chemical vapor deposition of two-dimensional organic–inorganic halide perovskites. iScience 2021, 24, 103486.

[137]

Yang, S.; Niu, W. X.; Wang, A. L.; Fan, Z. X.; Chen, B.; Tan, C. L.; Lu, Q. P.; Zhang, H. Ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem., Int. Ed. 2017, 56, 4252–4255.

[138]

Yu, D. J.; Cao, F.; Gao, Y. J.; Xiong, Y. H.; Zeng, H. B. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec. 2020 displays. Adv. Funct. Mater. 2018, 28, 1800248

[139]

He, Y. M.; Ma, Y.; Li, X. H.; Zhang, Y. Z. All-inorganic perovskite nanosheet fabrication under synergistic effect for integrated optoelectronics with strong light–matter interactions. ACS Appl. Nano Mater. 2021, 4, 2634–2641.

[140]

Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861–4869.

Nano Research
Pages 6231-6246
Cite this article:
Zhang X, Zhao S, Zhang J, et al. Materials design and preparation of ultrathin two-dimensional metal halide perovskites. Nano Research, 2024, 17(7): 6231-6246. https://doi.org/10.1007/s12274-024-6648-8
Topics:

540

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 14 February 2024
Revised: 20 March 2024
Accepted: 21 March 2024
Published: 25 April 2024
© Tsinghua University Press 2024
Return