AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A universal calibration method for eliminating topography-dependent current in conductive AFM and its application in nanoscale imaging

Chunlin Hao1Hao Xu1Shiquan Lin3Yaju Zhang1( )Jinmiao He1Bei Liu1Yuanzheng Zhang1Banghao Wu1Guozhen Shen2( )Haiwu Zheng1( )
Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
Show Author Information

Graphical Abstract

The origin of topographic crosstalk during conductive atomic force microscopy (CAFM) testing has been systematically investigated and a universal calibration method has been proposed.

Abstract

The topography and electrical properties are two crucial characteristics that determine the roles and functionalities of materials. Conductive atomic force microscopy (CAFM) is widely recognized for its ability to independently measure the topography and conductivity. The increasing trend towards miniaturization in electrical devices and sensors has encouraged an urgent demand for enhancing the accuracy of CAFM characterization. However, when performing CAFM tests on Bi0.5Na0.5TiO3 bulk ceramic, it is interesting to observe significant currents related to the topography. Why do insulators exhibit “conductivity” in CAFM testing? Herein, we thoroughly investigated the topography-dependent current during CAFM testing for the first time. Based on the linear dependence between the current and the first derivative of topography, the calibration method has been proposed to eliminate the topographic crosstalk. This method is evaluated on Bi0.5Na0.5TiO3 bulk ceramic, one-dimensional (1D) ZnO nanowire, two-dimensional (2D) NbOI2 flake, and biological lotus leaf. The corresponding results of negligible topography-interference current affirm the feasibility and universality of this calibration method. This work effectively addresses the challenge of topographic crosstalk in CAFM characterization, thereby preventing the erroneous estimation of the conductivity of any unknown sample.

Electronic Supplementary Material

Download File(s)
6651_ESM.pdf (694.2 KB)

References

[1]

Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

[2]

Güthner, P.; Dransfeld, K. Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 1992, 61, 1137–1139.

[3]

Murrell, M. P.; Welland, M. E.; O’Shea, S. J.; Wong, T. M. H.; Barnes, J. R.; McKinnon, A. W.; Heyns, M.; Verhaverbeke, S. Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy. Appl. Phys. Lett. 1993, 62, 786–788.

[4]

Hui, F.; Lanza, M. Scanning probe microscopy for advanced nanoelectronics. Nat. Electron. 2019, 2, 221–229.

[5]

Macedo, R. J.; Harrison, S. E.; Dorofeeva, T. S.; Harris, J. S.; Kiehl, R. A. Nanoscale probing of local electrical characteristics on MBE-grown Bi2Te3 surfaces under ambient conditions. Nano Lett. 2015, 15, 4241–4247.

[6]

Rommel, M.; Jambreck, J. D.; Lemberger, M.; Bauer, A. J.; Frey, L.; Murakami, K.; Richter, C.; Weinzierl, P. Influence of parasitic capacitances on conductive AFM I V measurements and approaches for its reduction. J. Vac. Sci. Technol. B 2013, 31, 01A108.

[7]

Lv, Y.; Bu, T. Z.; Zhou, H.; Liu, G. X.; Chen, Y. K.; Wang, Z. Z.; Fu, X. P.; Lin, Y.; Cao, J.; Zhang, C. An ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator with high energy conversion efficiency. Nanoscale 2022, 14, 7906–7912.

[8]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[9]

Chen, C. Y.; Liu, T. H.; Zhou, Y. S.; Zhang, Y.; Chueh, Y. L.; Chu, Y. H.; He, J. H.; Wang, Z. L. Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays. Nano Energy 2012, 1, 424–428.

[10]

Lu, Y.; Wang, Q.; Chen, R. Y.; Qiao, L. L.; Zhou, F. X.; Yang, X.; Wang, D.; Cao, H.; He, W. L.; Pan, F. et al. Spin-dependent charge transport in 1D chiral hybrid lead-bromide perovskite with high stability. Adv. Funct. Mater. 2021, 31, 2104605.

[11]

Khan, M. A.; Nayan, N.; Ahmad, M. K.; Fhong, S. C.; Mohamed Ali, M. S.; Mustafa, M. K.; Tahir, M. Interface study of hybrid CuO nanoparticles embedded ZnO nanowires heterojunction synthesized by controlled vapor deposition approach for optoelectronic devices. Opt. Mater. 2021, 117, 111132.

[12]

Margapoti, E.; Li, J.; Ceylan, Ö.; Seifert, M.; Nisic, F.; Anh, T. L.; Meggendorfer, F.; Dragonetti, C.; Palma, C. A.; Barth, J. V. et al. A 2D semiconductor-self-assembled monolayer photoswitchable diode. Adv. Mater. 2015, 27, 1426–1431.

[13]

Zhang, R. J.; Lai, Y. J.; Chen, W. J.; Teng, C. J.; Sun, Y. J.; Yang, L. S.; Wang, J. Y.; Liu, B. L.; Cheng, H. M. Carrier trapping in wrinkled 2D monolayer MoS2 for ultrathin memory. ACS Nano 2022, 16, 6309–6316.

[14]

Rezk, A.; Alhammadi, A.; Alnaqbi, W.; Nayfeh, A. Utilizing trapped charge at bilayer 2D MoS2/SiO2 interface for memory applications. Nanotechnology 2022, 33, 275201.

[15]

Xu, B.; Yang, S.; Li, Y.; Li, H.; Sun, Z. Y.; Sun, X. Y.; Zhang, J.; Qin, J. K.; Hu, P. A.; Zhen, L. et al. Alleviation of Schottky barrier heights at TMDs/metal interfaces with a tunneling layer of semiconducting InSe nanoflake. Appl. Surf. Sci. 2023, 636, 157853.

[16]

Fontserè, A.; Pérez-Tomás, A.; Placidi, M.; Llobet, J.; Baron, N.; Chenot, S.; Cordier, Y.; Moreno, J. C.; Iglesias, V.; Porti, M. et al. Gate current analysis of AlGaN/GaN on silicon heterojunction transistors at the nanoscale. Appl. Phys. Lett. 2012, 101, 093505.

[17]

Wei, T. T.; Lu, Y. Y.; Zhang, F.; Tang, J. S.; Gao, B.; Yu, P.; Qian, H.; Wu, H. Q. Three-dimensional reconstruction of conductive filaments in HfO x -based memristor. Adv. Mater. 2023, 35, 2209925.

[18]

Wang, W. X.; Anzum, I.; Li, Y.; Yue, W. J.; Gao, S.; Zhang, C. W.; Kim, E. S.; Kim, N. Y. Highly controllable multilevel performance in WS2 quantum dots-based memristor. IEEE Trans. Electron Devices 2023, 70, 6064–6071.

[19]

Celano, U.; Chen, Y. Y.; Wouters, D. J.; Groeseneken, G.; Jurczak, M.; Vandervorst, W. Filament observation in metal-oxide resistive switching devices. Appl. Phys. Lett. 2013, 102, 121602.

[20]

Zhao, L. N.; Lu, Z. X.; Zhang, F. Y.; Tian, G.; Song, X.; Li, Z. W.; Huang, K. R.; Zhang, Z.; Qin, M. H.; Wu, S. J. et al. Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates. Sci. Rep. 2015, 5, 9680.

[21]

Stern, A.; Eidelshtein, G.; Zhuravel, R.; Livshits, G. I.; Rotem, D.; Kotlyar, A.; Porath, D. Highly conductive thin uniform gold-coated DNA nanowires. Adv. Mater. 2018, 30, 1800433.

[22]

Wang, Y.; Xie, Y.; Gao, M. Y.; Zhang, W. X.; Liu, L. J.; Qu, Y. M.; Wang, J. J.; Hu, C. H.; Song, Z. X.; Wang, Z. B. Electrical conductivity measurement of λ DNA molecules by conductive atomic force microscopy. Nanotechnology 2022, 33, 055301.

[23]

Niman, C. M.; Sukenik, N.; Dang, T.; Nwachukwu, J.; Thirumurthy, M. A.; Jones, A. K.; Naaman, R.; Santra, K.; Das, T. K.; Paltiel, Y. et al. Bacterial extracellular electron transfer components are spin selective. J. Chem. Phys. 2023, 159, 145101.

[24]

Casuso, I.; Fumagalli, L.; Samitier, J.; Padrós, E.; Reggiani, L.; Akimov, V.; Gomila, G. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy. Nanotechnology 2007, 18, 465503.

[25]

Zhao, L.; Du, X. W.; Fang, B.; Liu, Q. Y.; Yang, H.; Li, F. Z.; Sheng, Y. H.; Zeng, X. F.; Zhong, H. J.; Zhao, W. D. Direct investigations of the electrical conductivity of normal and cancer breast cells by conductive atomic force microscopy. Ultramicroscopy 2022, 237, 113531.

[26]

Bussian, D. A.; O'Dea, J. R.; Metiu, H.; Buratto, S. K. Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells. Nano Lett. 2007, 7, 227–232.

[27]

Li, S. M.; Zhou, Y. S.; Zi, Y. L.; Zhang, G.; Wang, Z. L. Excluding contact electrification in surface potential measurement using Kelvin probe force microscopy. ACS Nano 2016, 10, 2528–2535.

[28]

Zhou, Y. S.; Liu, Y.; Zhu, G.; Lin, Z. H.; Pan, C. F.; Jing, Q. S.; Wang, Z. L. In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 2013, 13, 2771–2776

[29]

Chen, Q.; Cheng, B. X.; Wang, T. C.; Shang, H. F.; Shao, T. M. Method for the measurement of triboelectric charge transfer at solid–liquid interface. Friction 2023, 11, 1544–1556.

[30]

Pan, S. H.; Zhang, Z. N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17.

[31]

Fumagalli, L.; Ferrari, G.; Sampietro, M.; Casuso, I.; Martínez, E.; Samitier, J.; Gomila, G. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy. Nanotechnology 2006, 17, 4581–4587.

[32]

Cassina, V.; Gerosa, L.; Podestà, A.; Ferrari, G.; Sampietro, M.; Fiorentini, F.; Mazza, T.; Lenardi, C.; Milani, P. Nanoscale electrical properties of cluster-assembled palladium oxide thin films. Phys. Rev. B 2009, 79, 115422.

[33]

Zhang, Y. Z.; Yang, L. Y.; Zhang, Y. J.; Ding, Z. Y.; Wu, M. J.; Zhou, Y.; Diao, C. L.; Zheng, H. W.; Wang, X. F.; Wang, Z. L. Enhanced photovoltaic performances of La-doped bismuth ferrite/zinc oxide heterojunction by coupling piezo-phototronic effect and ferroelectricity. ACS Nano 2020, 14, 10723–10732.

[34]

Wang, J. T.; Zhou, Y.; Wang, Z. H.; Wang, B. Y.; Li, Y. Q.; Wu, B. H.; Hao, C. L.; Zhang, Y. J.; Zheng, H. W. Piezo-phototronic effect regulated broadband photoresponse of a-Ga2O3/ZnO heterojunction. Nanoscale 2023, 15, 7068–7076.

[35]

Fang, Y. Q.; Wang, F. K.; Wang, R. Q.; Zhai, T. Y.; Huang, F. Q. 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties. Adv. Mater. 2021, 33, 2101505

[36]

Liu, C. F.; Zhang, X. Y.; Wang, X. Y.; Wang, Z. Y.; Abdelwahab, I.; Verzhbitskiy, I.; Shao, Y.; Eda, G.; Sun, W. X.; Shen, L. et al. Ferroelectricity in niobium oxide dihalides NbOX2 (X = Cl, I): A macroscopic- to microscopic-scale study. ACS Nano 2023, 17, 7170–7179.

[37]

Cira, N. J.; Benusiglio, A.; Prakash, M. Vapour-mediated sensing and motility in two-component droplets. Nature 2015, 519, 446–450.

[38]

Jiang, X. B.; Shao, Y. S.; Li, J.; Wu, M. Y.; Niu, Y. C.; Ruan, X. H.; Yan, X. M.; Li, X. C.; He, G. H. Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation. ACS Nano 2020, 14, 17376–17386.

[39]

Wang, L. F.; Liu, S. H.; Feng, X. L.; Zhang, C. L.; Zhu, L. P.; Zhai, J. Y.; Qin, Y.; Wang, Z. L. Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 2020, 15, 661–667.

[40]

Liu, S. H.; Wang, L. F.; Feng, X. L.; Liu, J. M.; Qin, Y.; Wang, Z. L. Piezotronic tunneling junction gated by mechanical stimuli. Adv. Mater. 2019, 31, 1905436.

Nano Research
Pages 6509-6517
Cite this article:
Hao C, Xu H, Lin S, et al. A universal calibration method for eliminating topography-dependent current in conductive AFM and its application in nanoscale imaging. Nano Research, 2024, 17(7): 6509-6517. https://doi.org/10.1007/s12274-024-6651-0
Topics:

591

Views

1

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 17 January 2024
Revised: 12 March 2024
Accepted: 24 March 2024
Published: 22 April 2024
© Tsinghua University Press 2024
Return