AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fast internal preheating of 4680 lithium-ion batteries in cold environments

Chuyue Guan1,§Harrison Szeto2,§Olivia Wander3Vijay Kumar1Raphaële J. Clément3Yangying Zhu1( )
Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Department of Materials, University of California Santa Barbara, Santa Barbara, CA 93106, USA

§ Chuyue Guan and Harrison Szeto contributed equally to this work.

Show Author Information

Graphical Abstract

Thermal simulation presented in this work shows that internal heating of large-form-factor lithium-ion batteries can significantly reduce the time needed to pre-heat batteries in cold environments. Design guidelines are provided to minimize temperature heterogeneity of cylindrical batteries after pre-heating.

Abstract

Lithium-ion batteries are expected to operate within a narrow temperature window around room temperature for optimal performance and lifetime. Therefore, in cold environments, electric vehicle battery packs must be extensively preheated prior to charge or discharge. However, conventional preheating is accomplished externally, which is slow and thus significantly increases charging times. Recently, internal heating has been demonstrated as a potential solution to quickly and uniformly preheat a lithium-ion pouch cell. However, internal heating has not been evaluated in other battery formats such as cylindrical batteries. In this work, we present a numerical model of a 4680 battery with internal heaters for fast preheating in cold environments. The effects that the number of heater layers, heating duration, resting duration, environmental temperature, and boundary heat transfer coefficient have on the temperature heterogeneity of the battery were investigated. The results show that internal heating alone reduces the temperature variation within the battery by a factor of 5 compared to external heating, and by a factor of 20 when combining internal and external heating. This study further proves that internal preheating of lithium-ion batteries is a promising thermal management strategy, and provides guidance on potential design considerations and heating protocols to implement internal heating.

Electronic Supplementary Material

Download File(s)
6652_ESM.pdf (1.4 MB)

References

[1]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[2]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[3]

Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025.

[4]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[5]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561

[6]

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

[7]

Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

[8]

Tomaszewska, A.; Chu, Z. Y.; Feng, X. N.; O’Kane, S.; Liu, X. H.; Chen, J. Y.; Ji, C. Z.; Endler, E.; Li, R. H.; Liu, L. S. et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 100011.

[9]

Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114.

[10]

Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108.

[11]

Zhu, Y. Y.; Xie, J.; Pei, A.; Liu, B. F.; Wu, Y. C.; Lin, D. C.; Li, J.; Wang, H. S.; Chen, H.; Xu, J. W. et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 2019, 10, 2067.

[12]

Wang, H. S.; Zhu, Y. Y.; Kim, S. C.; Pei, A.; Li, Y. B.; Boyle, D. T.; Wang, H. X.; Zhang, Z. W.; Ye, Y. S.; Huang, W. et al. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proc. Natl. Acad. Sci. USA 2020, 117, 29453–29461.

[13]

Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664–670.

[14]

Bandhauer, T. M.; Garimella, S.; Fuller, T. F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 2011, 158, R1–R25.

[15]

Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212.

[16]

Zhang, X. H.; Li, Z.; Luo, L. A.; Fan, Y. L.; Du, Z. Y. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652.

[17]

Steinhardt, M.; Barreras, J. V.; Ruan, H. J.; Wu, B.; Offer, G. J.; Jossen, A. Meta-analysis of experimental results for heat capacity and thermal conductivity in lithium-ion batteries: A critical review. J. Power Sources 2022, 522, 230829.

[18]
Nissan USA. Nissan Leaf Owner’s Manual [Online]. Nissan USA: Franklin, TN, 2014; pp CH-8. https://owners.nissanusa.com/content/techpub/ManualsAndGuides/LEAF/2014/2014-LEAF-owner-manual.pdf (accessed Jul 7, 2023).
[19]

Carter, R.; Kingston, T. A.; Atkinson III, R. W.; Parmananda, M.; Dubarry, M.; Fear, C.; Mukherjee, P. P.; Love, C. T. Directionality of thermal gradients in lithium-ion batteries dictates diverging degradation modes. Cell Rep. Phys. Sci. 2021, 2, 100351.

[20]

Carter, R.; Love, C. T. Modulation of lithium plating in Li-ion batteries with external thermal gradient. ACS Appl. Mater. Interfaces 2018, 10, 26328–26334.

[21]

Wang, C. Y.; Zhang, G. S.; Ge, S. H.; Xu, T.; Ji, Y.; Yang, X. G.; Leng, Y. J. Lithium-ion battery structure that self-heats at low temperatures. Nature 2016, 529, 515–518.

[22]

Yang, X. G.; Zhang, G. S.; Ge, S. H.; Wang, C. Y. Fast charging of lithium-ion batteries at all temperatures. Proc. Natl. Acad. Sci. USA 2018, 115, 7266–7271.

[23]
Kane, M. Tesla’s 4680-Type Battery Cell Teardown: Specs Revealed [Online]. InsideEVs: New York, NY, 2022. https://insideevs.com/news/598656/tesla-4680-battery-cell-specs/ (accessed Aug 1, 2022).
[24]

Uitz, M.; Sternad, M.; Breuer, S.; Täubert, C.; Traußnig, T.; Hennige, V.; Hanzu, I.; Wilkening, M. Aging of Tesla’s 18650 lithium-ion cells: Correlating solid–electrolyte-interphase evolution with fading in capacity and power. J. Electrochem. Soc. 2017, 164, A3503–A3510.

[25]

Luyt, A. S.; Molefi, J. A.; Krump, H. Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym. Degrad. Stab. 2006, 91, 1629–1636.

[26]

Yoshida, K.; Morigami, H. Thermal properties of diamond/copper composite material. Microelectron. Reliab. 2004, 44, 303–308.

[27]
Carvill, J. 3-Thermodynamics and heat transfer. In Mechanical Engineer’s Data Handbook; Butterworth-Heinemann: Oxford, 1993; pp 102–145.
[28]

Keyser, M.; Pesaran, A.; Li, Q. B.; Santhanagopalan, S.; Smith, K.; Wood, E.; Ahmed, S.; Bloom, I.; Dufek, E.; Shirk, M. et al. Enabling fast charging-battery thermal considerations. J. Power Sources 2017, 367, 228–236.

[29]

Dong, T.; Wang, Y. W.; Cao, W. J.; Zhang, W. J.; Jiang, F. M. Analysis of lithium-ion battery thermal models inaccuracy caused by physical properties uncertainty. Appl. Therm. Eng. 2021, 198, 117513.

[30]

Chen, S. C.; Wan, C. C.; Wang, Y. Y. Thermal analysis of lithium-ion batteries. J. Power Sources 2005, 140, 111–124.

[31]

Lubner, S. D.; Kaur, S.; Fu, Y. B.; Battaglia, V.; Prasher, R. S. Identification and characterization of the dominant thermal resistance in lithium-ion batteries using operando 3-omega sensors. J. Appl. Phys. 2020, 127, 105104.

[32]

Zeng, Y. Q.; Chalise, D.; Fu, Y. B.; Schaadt, J.; Kaur, S.; Battaglia, V.; Lubner, S. D.; Prasher, R. S. Operando spatial mapping of lithium concentration using thermal-wave sensing. Joule 2021, 5, 2195–2210

[33]

Khandelwal, A.; Hariharan, K. S.; Gambhire, P.; Kolake, S. M.; Yeo, T.; Doo, S. Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells. J. Power Sources 2015, 279, 180–196.

[34]

Saw, L. H.; Ye, Y. H.; Tay, A. A. O. Electrochemical-thermal analysis of 18650 lithium iron phosphate cell. Energy Convers. Manage. 2013, 75, 162–174.

[35]

Samba, A.; Omar, N.; Gualous, H.; Capron, O.; Van den Bossche, P.; Van Mierlo, J. Impact of tab location on large format lithium-ion pouch cell based on fully coupled tree-dimensional electrochemical-thermal modeling. Electrochim. Acta 2014, 147, 319–329.

[36]

Xu, M.; Zhang, Z. Q.; Wang, X.; Jia, L.; Yang, L. X. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process. Energy 2015, 80, 303–317.

[37]

Richter, F.; Kjelstrup, S.; Vie, P. J. S.; Burheim, O. S. Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. J. Power Sources 2017, 359, 592–600.

[38]

Kraft, L.; Hoefling, A.; Zünd, T.; Kunz, A.; Steinhardt, M.; Tübke, J.; Jossen, A. Implications of the heat generation of LMR-NCM on the thermal behavior of large-format lithium-ion batteries. J. Electrochem. Soc. 2021, 168, 053505.

[39]

Sturm, J.; Rheinfeld, A.; Zilberman, I.; Spingler, F. B.; Kosch, S.; Frie, F.; Jossen, A. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging. J. Power Sources 2019, 412, 204–223.

[40]

Latief, F. H.; Sherif, E. S. M. Effects of sintering temperature and graphite addition on the mechanical properties of aluminum. J. Ind. Eng. Chem. 2012, 18, 2129–2134.

[41]

He, Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 2. Characterization of thermal greases. Thermochim. Acta 2005, 436, 130–134.

[42]

Chamroune, N.; Mereib, D.; Delange, F.; Caillault, N.; Lu, Y. F.; Grosseau-Poussard, J. L.; Silvain, J. F. Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites. J. Mater. Sci. 2018, 53, 8180–8192.

[43]

Dhaka, V.; Singh, S.; Anil, A. G.; Naik, T. S. S. K.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P. C.; Singh, J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ. Chem. Lett. 2022, 20, 1777–1800.

[44]

Brems, A.; Baeyens, J.; Vandecasteele, C.; Dewil, R. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. J. Air Waste Manage. Assoc. 2011, 61, 721–731

[45]

Lopes, C. M. A.; Felisberti, M. I. Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC. Polym. Test. 2004, 23, 637–643.

[46]

Leng, F.; Tan, C. M.; Pecht, M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci. Rep. 2015, 5, 12967.

Nano Research
Pages 8794-8802
Cite this article:
Guan C, Szeto H, Wander O, et al. Fast internal preheating of 4680 lithium-ion batteries in cold environments. Nano Research, 2024, 17(10): 8794-8802. https://doi.org/10.1007/s12274-024-6652-z
Topics:
Part of a topical collection:

577

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 19 January 2024
Revised: 15 March 2024
Accepted: 24 March 2024
Published: 02 May 2024
© Tsinghua University Press 2024
Return