AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance Bi2S3/ZnO photoanode enabled by interfacial engineering with oxyanion for efficient photoelectrochemical water oxidation

Ying-Chu Chen1Hsiang-Yu Jui2Yichen Feng3Yu-Kuei Hsu2( )Yun-Hsiang Lu2
Department of Chemical Engineering & Biotechnology, "National Taipei University of Technology", No. 1, Sec.3, Zhong-Xiao E. Rd., Da'an Dist., Taipei City 10608, Taiwan, China
Department of Opto-Electronic Engineering, "National Dong Hwa University", No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan, China
China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3, Yinlian Road, Lingang, Shanghai 201306, China
Show Author Information

Graphical Abstract

The synergistic effect of SO42– as a second binding site for oxygen evolution reaction (OER) intermediates and modifier of the electronic structure of Bi2S3 renders its photocurrent density achieving 8.61 mA·cm–2, which is among the highest performance reported to date.

Abstract

In the present contribution, we demonstrate that the sluggish kinetics of oxygen evolution reaction (OER) over the bismuth sulfide (Bi2S3) photoanode, which severely restricts its photoelectrochemical activity, is markedly accelerated by employing a sulfate-containing electrolyte. First-principle calculation points to the spontaneous adsorption of sulfate (SO42−) on Bi2S3 and its capacity of stabilizing the OER intermediates through hydrogen bonding, which is further reinforced by increasing the local density of states near the Fermi level of Bi2S3. Meanwhile, the electron transfer is also promoted to synergistically render the rate-determining step (from O* to OOH*) of OER over Bi2S3 kinetically facile. Last but not least, benefitting from such enhanced OER activity and efficient charge separation resulted from depositing Bi2S3 on the zinc oxide nanorods (ZnO NRs), forming a core–shell heterojunction, its photocurrent density achieves 8.61 mA·cm−2 at 1.23 VRHE, far surpassing those reported for additional Bi2S3-based and several state-of-the-art photoanodes in the literature and further exceeding their theoretical limit. The great promise of the Bi2S3/ZnO NRs is in view of such outperformance, the superior Faradaic yield of oxygen of more than ~ 80% and the outstanding half-cell applied bias photon-to-current efficiency of ~ 1% well corroborated.

Electronic Supplementary Material

Download File(s)
6653_ESM.pdf (1.7 MB)

References

[1]

Fabbri, E.; Schmidt, T. J. Oxygen evolution reaction-the enigma in water electrolysis. ACS Catal. 2018, 8, 9765–9774.

[2]

Dong, G. J.; Yan, L. L.; Bi, Y. P. Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting. J. Mater. Chem. A 2023, 11, 3888–3903.

[3]

Zhou, L. Q.; Ling, C.; Zhou, H.; Wang, X.; Liao, J.; Reddy, G. K.; Deng, L. Z.; Peck, T. C.; Zhang, R. G.; Whittingham, M. S. et al. A high-performance oxygen evolution catalyst in neutral-pH for sunlight-driven CO2 reduction. Nat. Commun. 2019, 10, 4081.

[4]

Morikawa, T.; Sato, S.; Sekizawa, K.; Suzuki, T. M.; Arai, T. Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: From photocatalysts to a monolithic artificial leaf. Acc. Chem. Res. 2022, 55, 933–943.

[5]

Huang, H.; Periyanagounder, D.; Chen, C. L.; Li, Z. X.; Lei, Q.; Han, Y.; Huang, K. W.; He, J. H. Artificial leaf for solar-driven ammonia conversion at milligram-scale using triple junction III–V photoelectrode. Adv. Sci. 2023, 10, 2205808.

[6]

Liu, X. R.; Yuan, Y. F.; Liu, J.; Liu, B.; Chen, X.; Ding, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. Nat. Commun. 2019, 10, 4767.

[7]

You, J.; Zhang, B. Q.; Wang, X. L.; Zhang, H. R.; Huang, L. L.; He, L. H.; Li, N. X.; Chang, Y. C.; Lin, S. W. Dual photoelectrodes activate oxygen evolution and oxygen reduction reactions enabling a high-performance Zn-air battery and an efficient solar energy storage. Chem. Eng. J. 2023, 470, 144095.

[8]

Pihosh, Y.; Minegishi, T.; Nandal, V.; Higashi, T.; Katayama, M.; Yamada, T.; Sasaki, Y.; Seki, K.; Suzuki, Y.; Nakabayashi, M. et al. Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection. Energy Environ. Sci. 2020, 13, 1519–1530.

[9]

Meng, L. X.; He, J. L.; Zhou, X. L.; Deng, K. M.; Xu, W. W.; Kidkhunthod, P.; Long, R.; Tang, Y. B.; Li, L. Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nat. Commun. 2021, 12, 5247.

[10]

Zhang, Z. Z.; Huang, X. J.; Zhang, B. B.; Bi, Y. P. High-performance and stable BiVO4 photoanodes for solar water splitting via phosphorus-oxygen bonded FeNi catalysts. Energy Environ. Sci. 2022, 15, 2867–2873.

[11]

Wang, L.; Lian, W. T.; Liu, B.; Lv, H. F.; Zhang, Y.; Wu, X. J.; Wang, T.; Gong, J. L.; Chen, T.; Xu, H. X. A transparent, high-performance, and stable Sb2S3 photoanode enabled by heterojunction engineering with conjugated polycarbazole frameworks for unbiased photoelectrochemical overall water splitting devices. Adv. Mater. 2022, 34, 2200723.

[12]

Feng, C. C.; Fu, S. R.; Wang, W.; Zhang, Y. J.; Bi, Y. P. High-crystalline and high-aspect-ratio hematite nanotube photoanode for efficient solar water splitting. Appl. Catal. B Environ. 2019, 257, 117900.

[13]

Wang, H. M.; Xia, Y. G.; Li, H. P.; Wang, X.; Yu, Y.; Jiao, X. L.; Chen, D. R. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat. Commun. 2020, 11, 3078.

[14]

Nishimae, S.; Mishima, Y.; Nishiyama, H.; Sasaki, Y.; Nakabayashi, M.; Inoue, Y.; Katayama, M.; Domen, K. Fabrication of BaTaO2N thin films by interfacial reactions of BaCO3/Ta3N5 layers on a ta substrate and resulting high photoanode efficiencies during water splitting. Sol. RRL 2020, 4, 1900542.

[15]

Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

[16]

Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem., Int. Ed. 2018, 57, 2248–2252.

[17]

Meng, Q. J.; Zhang, B. B.; Fan, L. Z.; Liu, H. D.; Valvo, M.; Edström, K.; Cuartero, M.; de Marco, R.; Crespo, G. A.; Sun, L. C. Efficient BiVO4 photoanodes by postsynthetic treatment: Remarkable improvements in photoelectrochemical performance from facile borate modification. Angew. Chem., Int. Ed. 2019, 58, 19027–19033.

[18]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem. 2021, 133, 1453–1460.

[19]

Zhang, X. M.; Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Wang, C.; Ran, L.; Gao, J. F.; Li, Z. W.; Zhang, B.; Fan, Z. Z. et al. Engineering single-atomic Ni-N4-O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 20657–20669.

[20]

Ye, S.; Shi, W. W.; Liu, Y.; Li, D. F.; Yin, H.; Chi, H. B.; Luo, Y. L.; Ta, N.; Fan, F. T.; Wang, X. L. et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508.

[21]

Ye, K. H.; Li, H. B.; Huang, D.; Xiao, S.; Qiu, W. T.; Li, M. Y.; Hu, Y. W.; Mai, W.; Ji, H. B.; Yang, S. H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 2019, 10, 3687.

[22]

Pei, L.; Lv, B. H.; Wang, S. B.; Yu, Z. T.; Yan, S. C.; Abe, R.; Zou, Z. G. Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation. ACS Appl. Energy Mater. 2018, 1, 4150–4157.

[23]

Yi, S. S.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Highly efficient photoelectrochemical water splitting: Surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3 p-n heterojunction nanorod arrays. Adv. Funct. Mater. 2019, 29, 1801902.

[24]

Zhang, J. J.; Chang, X. X.; Li, C. C.; Li, A.; Liu, S. S.; Wang, T.; Gong, J. L. WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation. J. Mater. Chem. A 2018, 6, 3350–3354.

[25]

Li, Y.; Mei, Q.; Liu, Z. J.; Hu, X. S.; Zhou, Z. H.; Huang, J. W.; Bai, B.; Liu, H.; Ding, F.; Wang, Q. Z. Fluorine-doped iron oxyhydroxide cocatalyst: Promotion on the WO3 photoanode conducted photoelectrochemical water splitting. Appl. Catal. B Environ. 2022, 304, 120995.

[26]

Seo, J.; Nakabayashi, M.; Hisatomi, T.; Shibata, N.; Minegishi, T.; Domen, K. Solar-driven water splitting over a BaTaO2N photoanode enhanced by annealing in argon. ACS Appl. Energy Mater. 2019, 2, 5777–5784.

[27]

Wygant, B. R.; Kawashima, K.; Mullins, C. B. Catalyst or precatalyst The effect of oxidation on transition metal carbide, pnictide, and chalcogenide oxygen evolution catalysts. ACS Energy Lett. 2018, 3, 2956–2966.

[28]

Hausmann, J. N.; Menezes, P. W. Why should transition metal chalcogenides be investigated as water splitting precatalysts even though they transform into (oxyhydr)oxides. Curr. Opin. Electrochem. 2022, 34, 100991.

[29]

Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.

[30]

Hausmann, J. N.; Menezes, P. W. Effect of surface-adsorbed and intercalated (oxy)anions on the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202207279.

[31]

Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeO x as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

[32]

Xu, W. W.; Gao, W. C.; Meng, L. X.; Tian, W.; Li, L. Incorporation of sulfate anions and sulfur vacancies in ZnIn2S4 photoanode for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2021, 11, 2101181.

[33]

Zhang, R. R.; Wang, L.; Pan, L.; Chen, Z. C.; Jia, W. Y.; Zhang, X. W.; Zou, J. J. Solid-acid-mediated electronic structure regulation of electrocatalysts and scaling relation breaking of oxygen evolution reaction. Appl. Catal. B Environ. 2020, 277, 119237.

[34]

Wang, X. L.; Ma, R. G.; Li, S. L.; Xu, M. M.; Liu, L. J.; Feng, Y. H.; Thomas, T.; Yang, M. H.; Wang, J. C. In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy Mater. 2023, 13, 2300765.

[35]

Liao, H. X.; Luo, T.; Tan, P. F.; Chen, K. J.; Lu, L. L.; Liu, Y.; Liu, M.; Pan, J. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 2021, 31, 2102772.

[36]

Liu, C.; Dasgupta, N. P.; Yang, P. D. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 2014, 26, 415–422.

[37]

Yang, W.; Prabhakar, R. R.; Tan, J.; Tilley, S. D.; Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 2019, 48, 4979–5015.

[38]

Fountaine, K. T.; Lewerenz, H. J.; Atwater, H. A. Efficiency limits for photoelectrochemical water-splitting. Nat. Commun. 2016, 7, 13706.

[39]

Lu, Y.; Popescu, R.; Gerthsen, D.; Feng, Y. C.; Su, W. R.; Hsu, Y. K.; Chen, Y. C. Highly efficient recovery of H2 from industrial waste by sunlight-driven photoelectrocatalysis over a ZnS/Bi2S3/ZnO photoelectrode. ACS Appl. Mater. Interfaces 2022, 14, 7756–7767.

[40]

Subramanyam, P.; Meena, B.; Sinha, G. N.; Suryakala, D.; Subrahmanyam, C. Facile synthesis and photoelectrochemical performance of a Bi2S3@rGO nanocomposite photoanode for efficient water splitting. Energy Fuels 2021, 35, 6315–6321.

[41]

Wang, Y. D.; Tian, W.; Chen, L.; Cao, F. R.; Guo, J.; Li, L. Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2017, 9, 40235–40243.

[42]

Xiong, Y. L.; Yang, L.; Nandakumar, D. K.; Yang, Y. B.; Dong, H. M.; Ji, X.; Xiao, P.; Tan, S. C. Highly efficient photoelectrochemical water oxidation enabled by enhanced interfacial interaction in 2D/1D In2S3@Bi2S3 heterostructures. J. Mater. Chem. A 2020, 8, 5612–5621.

[43]

Wang, Y.; Liu, M.; Hao, S. Q.; Li, Y.; Li, Q. Q.; Liu, F. Y.; Lai, Y. Q.; Li, J.; Wolverton, C.; Dravid, V. P. et al. Synergistic defect- and interfacial-engineering of a Bi2S3-based nanoplate network for highperformance photoelectrochemical solar water splitting. J. Mater. Chem. A 2022, 10, 7830–7840.

[44]

Li, Y. T.; Liu, Z. F.; Li, J. W.; Ruan, M. N.; Guo, Z. G. An effective strategy of constructing a multijunction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 2020, 8, 6256–6267.

[45]

Chen, H. Q.; Lin, L. Y.; Chen, S. L. Direct growth of BiVO4/Bi2S3 nanorod array on conductive glass as photocatalyst for enhancing the photoelectrochemical performance. ACS Appl. Energy Mater. 2018, 1, 6089–6100.

[46]

Majumder, S.; Quang, N. D.; Kim, C.; Kim, D. Anion exchange and successive ionic layer adsorption and reaction-assisted coating of BiVO4 with Bi2S3 to produce nanostructured photoanode for enhanced photoelectrochemical water splitting. J. Colloid Interface Sci. 2021, 585, 72–84.

[47]

Majumder, S.; Gu, M. J.; Kim, K. H. Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting. Appl. Surf. Sci. 2022, 574, 151562.

[48]

Chen, Y. C.; Yang, Z. L.; Hsu, Y. K. Unassisted solar water splitting by dual Cu2O-based tandem device with complementary wavelength-dependent quantum efficiency and antipodal conductivity. Renewable Energy 2023, 212, 166–174.

[49]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[50]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[51]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[52]

Chen, Y. C.; Kuo, H. T.; Popescu, R.; Hsu, Y. K. Ultralow-biased solar photoelectrochemical hydrogen generation by Ag2S/ZnO heterojunction with high efficiency. J. Taiwan Inst. Chem. Eng. 2022, 140, 104554.

[53]

Chen, Y. C.; Wu, Z. J.; Hsu, Y. K. Enhancing the quasi-theoretical photocurrent density of ZnO nanorods via a lukewarm hydrothermal method. Nanoscale 2020, 12, 12292–12299.

[54]

Kharbish, S.; Libowitzky, E.; Beran, A. Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. Eur. J. Mineral. 2009, 21, 325–333.

[55]

Zhao, Y. Y.; Chua, K. T. E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z. P.; Xiong, Q. H. Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 2011, 84, 205330.

[56]

Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327–1334.

[57]

Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; Sharp, I. D. et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 2020, 3, 932–940.

[58]

Li, M. X.; Luo, W. J.; Cao, D. P.; Zhao, X.; Li, Z. S.; Yu, T.; Zou, Z. G. A co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem., Int. Ed. 2013, 52, 11016–11020.

[59]

Wang, Y.; Li, F.; Zhou, X.; Yu, F. S.; Du, J.; Bai, L. C.; Sun, L. C. Highly efficient photoelectrochemical water splitting with an immobilized molecular Co4O4 cubane catalyst. Angew. Chem., Int. Ed. 2017, 56, 6911–6915.

[60]

Kim, J. H.; Jang, J. W.; Jo, Y. H.; Abdi, F. F.; Lee, Y. H.; van de Krol, R.; Lee, J. S. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 2016, 7, 13380.

[61]

Peerakiatkhajohn, P.; Yun, J. H.; Chen, H. J.; Lyu, M.; Butburee, T.; Wang, L. Z. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv. Mater. 2016, 28, 6405–6410.

[62]

Sarnowska, M.; Bienkowski, K.; Barczuk, P. J.; Solarska, R.; Augustynski, J. Highly efficient and stable solar water splitting at (Na)WO3 photoanodes in acidic electrolyte assisted by non-noble metal oxygen evolution catalyst. Adv. Energy Mater. 2016, 6, 1600526.

[63]

Cai, M. K.; Li, X.; Zhao, H. Y.; Liu, C.; You, Y. M.; Lin, F.; Tong, X.; Wang, Z. M. Decoration of BiVO4 photoanodes with near-infrared quantum dots for boosted photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 50046–50056.

[64]

Tayebi, M.; Masoumi, Z.; Kolaei, M.; Tayyebi, A.; Tayebi, M.; Seo, B.; Lim, C. S.; Kim, H. G.; Lee, B. K. Highly efficient and stable WO3/MoS2-MoO X photoanode for photoelectrochemical hydrogen production; a collaborative approach of facet engineering and P-N junction. Chem. Eng. J. 2022, 446, 136830.

[65]

Zhang, C. M.; Wang, M.; Gao, K. Y.; Zhu, H. B.; Ma, J.; Fang, X. L.; Wang, X. F.; Ding, Y. Constructing N–Cu–S interface chemical bonds over SnS2 for efficient solar-driven photoelectrochemical water splitting. Small 2023, 19, 2205706.

[66]

Hansen, J. N.; Prats, H.; Toudahl, K. K.; Secher, N. M.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. Is there anything better than Pt for HER. ACS Energy Lett. 2021, 6, 1175–1180.

[67]

She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[68]

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[69]

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

[70]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[71]

Ran, N.; Song, E. H.; Wang, Y. W.; Zhou, Y.; Liu, J. J. Dynamic coordination transformation of active sites in single-atom MoS2 catalysts for boosted oxygen evolution catalysis. Energy Environ. Sci. 2022, 15, 2071–2083.

[72]

Wang, H.; Zhai, T. T.; Wu, Y. F.; Zhou, T.; Zhou, B. B.; Shang, C. X.; Guo, Z. X. High-valence oxides for high performance oxygen evolution electrocatalysis. Adv. Sci. 2023, 10, 2301706.

[73]

He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 57, 16114–16119.

[74]

Zhang, N.; Shang, J.; Deng, X.; Cai, L. J.; Long, R.; Xiong, Y. J.; Chai, Y. Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction. ACS Nano 2022, 16, 4795–4804.

[75]

Wang, H. B.; Tang, C. Y.; Sun, B.; Liu, J. C.; Xia, Y.; Li, W. Q.; Jiang, C. Z.; He, D.; Xiao, X. H. In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction. Int. J. Extrem. Manuf. 2022, 4, 035002.

[76]

Moehl, T.; Cui, W.; Wick-Joliat, R.; Tilley, S. D. Resistance-based analysis of limiting interfaces in multilayer water splitting photocathodes by impedance spectroscopy. Sustain. Energy Fuels 2019, 3, 2067–2075.

[77]

Han, D.; Du, M. H.; Dai, C. M.; Sun, D. Y.; Chen, S. Y. Influence of defects and dopants on the photovoltaic performance of Bi2S3: First-principles insights. J. Mater. Chem. A 2017, 5, 6200–6210.

[78]

Chen, Y. C.; Hsu, Y. K. Benchmarked capacitive performance of a 330 μm-thick Na x V2O5/CC monolithic electrode via synergism of a hierarchical pore structure and ultrahigh-mass-loading. Nanoscale 2020, 12, 14290–14297.

[79]

Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 2011, 23, 3712–3717.

Nano Research
Pages 5996-6005
Cite this article:
Chen Y-C, Jui H-Y, Feng Y, et al. High-performance Bi2S3/ZnO photoanode enabled by interfacial engineering with oxyanion for efficient photoelectrochemical water oxidation. Nano Research, 2024, 17(7): 5996-6005. https://doi.org/10.1007/s12274-024-6653-y
Topics:

293

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 20 January 2024
Revised: 24 March 2024
Accepted: 24 March 2024
Published: 19 April 2024
© Tsinghua University Press 2024
Return