AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Theoretical and experimental investigations on single-atom catalysis: Pt1/FeOx for water–gas shift reaction

Shan-Fei Wang1,§Yangyang Li2,3,§Haiyan Wang1Jin-Xia Liang1( )Chun Zhu1( )Botao Qiao2( )
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Shan-Fei Wang and Yangyang Li contributed equally to this work.

Show Author Information

Graphical Abstract

FeOx supported Pt1 single-atom catalysts highly effectively catalyze the water–gas shift reaction.

Abstract

Oxide-supported metal single-atom catalysts (SACs) have exhibited excellent catalytic performance for water–gas shift (WGS) reaction. Here, we report the single-atom catalyst Pt1/FeOx exhibits excellent medium temperature catalytic performance for WGS reactions by the density functional theory (DFT) calculations and experimental results. The calculations indicate that H2O molecules are easily dissociated at oxygen vacancies, and the formed *OH and *O are adsorbed on Pt1 single atoms and the adjacent O atoms, respectively. After studying four possible reaction mechanisms, it is found that the optimal WGS reaction pathway is proceeded along the carboxyl mechanism (pathway III), in which the formation of *COOH intermediates can promote the stability of Pt1/FeOx SAC and the easier occurrence of WGS reaction. The energy barrier of the rate-determining step during the entire reaction cycle is only 1.16 eV, showing the high activity for the medium temperature WGS reaction on Pt1/FeOx SAC, which was verified by experimental results. Moreover, the calculated turnover frequencies (TOFs) of CO2 and H2 formation on Pt1/FeOx at 610 K (337 °C) can reach up to 1.14 × 10−3 s−1·site−1 through carboxyl mechanism. In this work, we further expand the application potential of Pt1/FeOx SAC in WGS reaction.

Electronic Supplementary Material

Download File(s)
6655_ESM.pdf (8.6 MB)

References

[1]

Goldthau, A. The G20 must govern the shift to low-carbon energy. Nature 2017, 546, 203–205.

[2]

Dincer, I.; Aydin, M. I. New paradigms in sustainable energy systems with hydrogen. Energy Convers. Manag. 2023, 283, 116950.

[3]

Blay-Roger, R.; Bach, W.; Bobadilla, L. F.; Reina, T. R.; Odriozola, J. A.; Amils, R.; Blay, V. Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas. Renew. Sust. Energy Rev. 2024, 189, 113888.

[4]

Zhang, C. Y.; Wang, H.; Yu, H. B.; Yi, K. X.; Zhang, W.; Yuan, X. Z.; Huang, J. H.; Deng, Y. C.; Zeng, G. M. Single-atom catalysts for hydrogen generation: Rational design, recent advances, and perspectives. Adv. Energy Mater. 2022, 12, 2200875.

[5]

Yin, P.; Yang, Y. S.; Yan, H.; Wei, M. Theoretical calculations on metal catalysts toward water–gas shift reaction: A review. Chem.—Eur. J. 2023, 29, e202203781.

[6]

Liang, J. X.; Lin, J.; Liu, J. Y.; Wang, X. D.; Zhang, T.; Li, J. Dual metal active sites in an Ir1/FeO x single-atom catalyst: A redox mechanism for the water–gas shift reaction. Angew. Chem., Int. Ed. 2020, 59, 12868–12875.

[7]

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeO x single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

[8]

Chen, Y.; Lin, J.; Wang, X. D. Noble-metal based single-atom catalysts for the water–gas shift reaction. Chem. Commun. 2022, 58, 208–222.

[9]

An, J. W.; Wang, G. C. Coordination-number-determined activity of copper catalyst in water–gas shift reaction. Fuel 2023, 343, 127850.

[10]

Zhao, J. Q.; Bai, Y.; Li, Z. H.; Liu, J. J.; Wang, W.; Wang, P.; Yang, B.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D. et al. Plasmonic Cu nanoparticles for the low-temperature photo-driven water–gas shift reaction. Angew. Chem., Int. Ed. 2023, 62, e202219299.

[11]

Jin, C. C.; Wang, B. B.; Zhou, Y.; Yang, F.; Guo, P. Y.; Liu, Z.; Shen, W. J. Restructuring of the gold–carbide interface for low-temperature water–gas shift. Chem. Commun. 2022, 58, 7313–7316.

[12]

Shen, H. D.; Dong, Y. J.; Yang, S. W.; He, Y.; Wang, Q. M.; Cao, Y. L.; Wang, W. B.; Wang, T. S.; Zhang, Q. Y.; Zhang, H. P. Identifying the roles of Ce3+–OH and Ce–H in the reverse water–gas shift reaction over highly active Ni-doped CeO2 catalyst. Nano Res. 2022, 15, 5831–5841.

[13]

Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water–gas shift reaction. Science 2017, 357, 389–393.

[14]

Sun, L.; Cao, L. R.; Su, Y.; Wang, C. J.; Lin, J.; Wang, X. D. Ru1/FeO x single-atom catalyst with dual active sites for water gas shift reaction without methanation. Appl. Catal. B: Environ. 2022, 318, 121841.

[15]

Carter, J. H.; Hutchings, G. J. Recent advances in the gold-catalysed low-temperature water–gas shift reaction. Catalysts 2018, 8, 627.

[16]

Palma, V.; Ruocco, C.; Cortese, M.; Renda, S.; Meloni, E.; Festa, G.; Martino, M. Platinum based catalysts in the water gas shift reaction: Recent advances. Metals 2020, 10, 866.

[17]

Yalçın, Ö.; Önal, I. DFT investigation of high temperature water gas shift reaction on chromium–iron mixed oxide catalyst. Int. J. Hydrogen Energy 2014, 39, 19563–19569.

[18]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[19]

Tian, L. C.; Hu, J. N.; Meng, Y.; Liang, J. X.; Zhu, C.; Li, J. Ultrastable nickel single-atom catalysts with high activity and selectivity for electrocatalytic CO2 methanation. Nano Res. 2023, 16, 8987–8995.

[20]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[21]

Hu, J. N.; Tian, L. C.; Wang, H. Y.; Meng, Y.; Liang, J. X.; Zhu, C.; Li, J. Theoretical screening of single-atom electrocatalysts of MXene-supported 3 d-metals for efficient nitrogen reduction. Chin. J. Catal. 2023, 52, 252–262.

[22]

Fang, G. Q.; Hu, J. N.; Tian, L. C.; Liang, J. X.; Lin, J.; Li, L.; Zhu, C.; Wang, X. D. Zirconium-oxo nodes of MOFs with tunable electronic properties provide effective ·OH species for enhanced methane hydroxylation. Angew. Chem., Int. Ed. 2022, 61, e202205077.

[23]

Zhu, C.; Liang, J. X.; Wang, Y. G.; Li, J. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. Chin. J. Catal. 2022, 43, 1830–1841.

[24]

Meng, Y.; Liang, J. X.; Zhu, C.; Xu, C. Q.; Li, J. Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation. Sci. China Mater. 2022, 65, 1303–1312.

[25]

Liang, J. X.; Yu, Q.; Yang, X. F.; Zhang, T.; Li, J. A systematic theoretical study on FeO x -supported single-atom catalysts: M1/FeO x for CO oxidation. Nano Res. 2018, 11, 1599–1611.

[26]

Liang, J. X.; Yang, X. F.; Xu, C. Q.; Zhang, T.; Li, J. Catalytic ativities of single-atom catalysts for CO oxidation: Pt1/FeO x vs. Fe1/FeO x . Chin. J. Catal. 2017, 38, 1566–1573.

[27]

Liang, J. X.; Yang, X. F.; Wang, A. Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeO x for CO oxidation. Catal. Sci. Technol. 2016, 6, 6886–6892.

[28]

Liang, J. X.; Lin, J.; Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Liu, J. Y.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeO x for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.

[29]

Talib, S. H.; Baskaran, S.; Yu, X. H.; Yu, Q.; Bashir, B.; Muhammad, S.; Hussain, S.; Chen, X. N.; Li, J. Non-noble metal single-atom catalyst of Co1/MXene (Mo2CS2) for CO oxidation. Sci. China Mater. 2021, 64, 651–663.

[30]

Chen, Y. J.; Zhuo, H. Y.; Pan, Y.; Liang, J. X.; Liu, C. G.; Li, J. Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. Sci. China Mater. 2021, 64, 1939–1951.

[31]

Li, L.; Wang, A. Q.; Qiao, B. T.; Lin, J.; Huang, Y. Q.; Wang, X. D.; Zhang, T. Origin of the high activity of Au/FeO x for low-temperature CO oxidation: Direct evidence for a redox mechanism. J. Catal. 2013, 299, 90–100.

[32]

Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal–support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

[33]

Li, J.; Li, Y. D.; Zhang, T. Recent progresses in the research of single-atom catalysts. Sci. China Mater. 2020, 63, 889–891.

[34]

Tang, Y.; Wang, Y. G.; Liang, J. X.; Li, J. Investigation of water adsorption and dissociation on Au1/CeO2 single-atom catalysts using density functional theory. Chin. J. Catal. 2017, 38, 1558–1565.

[35]

Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46–49.

[36]

Tian, L. C.; Fang, G. Q.; Zhou, Y.; Yu, W. J.; Li, L.; Hu, J. N.; Wang, H. Y.; Liang, J. X.; Zhu, C.; Wang, X. D.; Lin, J. Deciphering structural evolution of adsorbed ˙OH species on Zr-oxo nodes of UiO-66 to modulate methane hydroxylation. J. Mater. Chem. A 2024, 12, 3565–3574.

[37]

Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.

[38]

Li, J.; Stephanopoulos, M. F.; Xia, Y. N. Introduction: Heterogeneous single-atom catalysis. Chem. Rev. 2020, 120, 11699–11702.

[39]

Meng, Y.; Wang, H. Y.; Liang, J. X.; Zhu, C.; Li, J. Computational screening of Pt1@Ti3C2T2 (T = O, S) MXene catalysts for water–gas shift reaction. Precis. Chem. 2024, 2, 70–80.

[40]

Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem. Rev. 2020, 120, 12315–12341.

[41]

Zhu, C.; Liang, J. X.; Meng, Y.; Lin, J.; Cao, Z. X. Mn-corrolazine-based 2D-nanocatalytic material with single Mn atoms for catalytic oxidation of alkane to alcohol. Chin. J. Catal. 2021, 42, 1030–1039.

[42]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[43]

Li, J.; Liu, J.; Zhang, T. Preface to the special issue of the international symposium on single-atom catalysis (ISSAC-2016). Chin. J. Catal. 2017, 38, 1431.

[44]

Huang, Z. W.; Liang, J. X.; Tang, D. M.; Chen, Y. X.; Qu, W. Y.; Hu, X. L.; Chen, J. X.; Dong, Y. Y.; Xu, D. R.; Golberg, D. et al. Interplay between remote single-atom active sites triggers speedy catalytic oxidation. Chem 2022, 8, 3008–3017.

[45]

Zhu, C.; Liang, J. X.; Cao, Z. X. Mn–O–O electron spin flip mechanism triggered by the visible-light irradiation for the generation of an active Mn(V)-oxo complex from O2: Insight from density functional calculations. J. Phys. Chem. C 2018, 122, 20781–20786.

[46]

Wu, J.; Long, T. R.; Wang, H. Y.; Liang, J. X.; Zhu, C. Oriented external electric fields regurating the reaction mechanism of CH4 oxidation catalyzed by Fe(IV)-oxo-corrolazine: Insight from density functional calculations. Front. Chem. 2022, 10, 896944.

[47]

Long, T. R.; Wan, H. Y.; Zhang, J. Q.; Wu, J.; Liang, J. X.; Zhu, C. The high-effective catalytic degradation of benzo[a]pyrene by Mn-corrolazine regulated by oriented external electric field: Insight from DFT study. Front. Chem. 2022, 10, 884105.

[48]

Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

[49]

Liu, Y.; Liu, J. C.; Li, T. H.; Duan, Z. H.; Zhang, T. Y.; Yan, M.; Li, W. L.; Xiao, H.; Wang, Y. G.; Chang, C. R. et al. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 18586–18590.

[50]

Liu, J. C.; Xiao, H.; Li, J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 2020, 142, 3375–3383.

[51]

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeN x species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

[52]

Li, T. B.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J. Y.; Huang, J. H.; Sun, H.; Haruta, M. et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem., Int. Ed. 2018, 57, 7795–7799.

[53]

Guan, H. L.; Lin, J.; Qiao, B. T.; Miao, S.; Wang, A. Q.; Wang, X. D.; Zhang, T. Enhanced performance of Rh1/TiO2 catalyst without methanation in water–gas shift reaction. AIChE J. 2017, 63, 2081–2088.

[54]

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure–performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

[55]

Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-N x C y catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

[56]

Talib, S. H.; Hussain, S.; Baskaran, S.; Lu, Z. S.; Li, J. Chromium single-atom catalyst with graphyne support: A theoretical study of NO oxidation and reduction. ACS Catal. 2020, 10, 11951–11961.

[57]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 2020, 12, 764–772.

[58]

Liu, K. P.; Tang, Y.; Yu, Z. Y.; Ge, B. H.; Ren, G. Q.; Ren, Y. J.; Su, Y.; Zhang, J. C.; Sun, X. C.; Chen, Z. Q. et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci. China Mater. 2020, 63, 949–958.

[59]

Chen, Z.; Chen, Y. J.; Chao, S. L.; Dong, X. B.; Chen, W. X.; Luo, J.; Liu, C. G.; Wang, D. S.; Chen, C.; Li, W. et al. Single-atom AuI–N3 site for acetylene hydrochlorination reaction. ACS Catal. 2020, 10, 1865–1870.

[60]

Zhou, M. X.; Yang, M.; Yang, X. F.; Zhao, X. C.; Sun, L.; Deng, W. Q.; Wang, A. Q.; Li, J.; Zhang, T. On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WO x in the hydrogenolysis reaction. Chin. J. Catal. 2020, 41, 524–532.

[61]

Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

[62]

Xing, D. H.; Xu, C. Q.; Wang, Y. G.; Li, J. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters. J. Phys. Chem. C 2019, 123, 10494–10500.

[63]

Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

[64]

Han, B.; Lang, R.; Tang, H. L.; Xu, J.; Gu, X. K.; Qiao, B. T.; Liu, J. Y. Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation. Chin. J. Catal. 2019, 40, 1847–1853.

[65]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[66]

Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

[67]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[68]

Yang, W. N.; Zhao, X. G.; Wang, Y.; Wang, R.; Yang, W. H.; Peng, Y.; Li, J. H. Selective dissolution to synthesize densely populated Pt single atom catalyst. Nano Res. 2023, 16, 219–227.

[69]

Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co–N–C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

[70]

Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.

[71]

Gu, X. K.; Qiao, B. T.; Huang, C. Q.; Ding, W. C.; Sun, K. J.; Zhan, E. S.; Zhang, T.; Liu, J. Y.; Li, W. X. Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal. 2014, 4, 3886–3890.

[72]

Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

[73]

Zhang, Z. W.; Zhang, L.; Wang, X. Y.; Feng, Y.; Liu, X. W.; Sun, W. M. Rational design of graphyne-based dual-atom site catalysts for CO oxidation. Nano Res. 2023, 16, 343–351.

[74]

Su, Y. Q.; Xia, G. J.; Qin, Y. Y.; Ding, S. J.; Wang, Y. G. Lattice oxygen self-spillover on reducible oxide supported metal cluster: The water–gas shift reaction on Cu/CeO2 catalyst. Chem. Sci. 2021, 12, 8260–8267.

[75]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[76]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[77]

Zhu, Q. T.; Shen, H. L.; Han, C.; Huang, L.; Zhou, Y. T.; Du, Y. X.; Kang, X.; Zhu, M. Z. Rationally construction of atomic-precise interfacial charge transfer channel and strong build-in electric field in nanocluster-based Z-scheme heterojunctions with enhanced photocatalytic hydrogen production. Nano Res. 2024, 17, 5002–5010.

[78]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[79]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[80]

Sun, J. K.; Pan, Y. W.; Xu, M. Q.; Sun, L.; Zhang, S. L.; Deng, W. Q.; Zhai, D. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano Res. 2024, 17, 1086–1093.

[81]

Zhou, Y. N.; Li, J.; Gao, X. P.; Chu, W.; Gao, G. P.; Wang, L. W. Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 9979–9999.

[82]

Aggarwal, P.; Sarkar, D.; Awasthi, K.; Menezes, P. W. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord. Chem. Rev. 2022, 452, 214289.

[83]

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

[84]

Wang, Y. G.; Mei, D. H.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.

[85]

Wang, Z. S.; Cheng, M.; Liu, Y.; Wu, Z. W.; Gu, H. Y.; Huang, Y.; Zhang, L. Z.; Liu, X. Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem., Int. Ed. 2023, 62, e202301483.

[86]

Wu, D. F.; Zhou, S. Y.; Du, C. C.; Li, J.; Huang, J. Y.; Shen, H. X.; Datye, A. K.; Jiang, S.; Miller, J. T.; Lin, S. et al. The proximity between hydroxyl and single atom determines the catalytic reactivity of Rh1/CeO2 single-atom catalysts. Nano Res. 2024, 17, 397–406.

[87]

Tiwari, R.; Sarkar, B.; Tiwari, R.; Pendem, C.; Sasaki, T.; Saran, S.; Bal, R. Pt nanoparticles with tuneable size supported on nanocrystalline ceria for the low temperature water–gas-shift (WGS) reaction. J. Mol. Catal. A: Chem. 2014, 395, 117–123.

[88]

Shi, Q. Q.; Wang, Y. H.; Guo, S.; Han, Z. K.; Ta, N.; Li, G.; Baiker, A. NO reduction with CO over CuO x /CeO2 nanocomposites: Influence of oxygen vacancies and lattice strain. Catal. Sci. Technol. 2021, 11, 6543–6552.

[89]

Chen, J.; Bogdanov, N. A.; Usvyat, D.; Fang, W.; Michaelides, A.; Alavi, A. The color center singlet state of oxygen vacancies in TiO2. J. Chem. Phys. 2020, 153, 204704.

[90]

Liu, L. Q.; Zhou, F.; Wang, L. G.; Qi, X. J.; Shi, F.; Deng, Y. Q. Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeO x support for oxygen supply during reactions. J. Catal. 2010, 274, 1–10.

[91]

Qiao, B.; Liu, J.; Allard, L.; Wang, A.; Cui, Y.; Zhang, T.; Yang, X.; Li, J.; Jiang, Z. Single-atom catalysis: Pt1/FeO x for CO oxidation and preferential oxidation of CO in H2. Microsc. Microanal. 2012, 18, 350–351.

[92]

Lin, J.; Qiao, B. T.; Li, N.; Li, L.; Sun, X. C.; Liu, J. Y.; Wang, X. D.; Zhang, T. Little do more: A highly effective Pt1/FeO x single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911–7914.

[93]

Xu, G.; Wei, H. S.; Ren, Y. J.; Yin, J. Z.; Wang, A. Q.; Zhang, T. Chemoselective hydrogenation of 3-nitrostyrene over a Pt/FeO x pseudo-single-atom-catalyst in CO2-expanded liquids. Green Chem. 2016, 18, 1332–1338.

[94]

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeO x -supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

[95]

Tian, M. Z.; Liu, S. J.; Wang, L. L.; Ding, H.; Zhao, D.; Wang, Y. Q.; Cui, J. H.; Fu, J. F.; Shang, J.; Li, G. K. Complete degradation of gaseous methanol over Pt/FeO x catalysts by normal temperature catalytic ozonation. Environ. Sci. Technol. 2020, 54, 1938–1945.

[96]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[97]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[98]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868

[99]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[100]

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Szotek, Z.; Temmerman, W. M.; Sutton, A. P. Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. 3.0.CO;2-F">Phys. Status Sol. 1998, 166, 429–443.

[101]

Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 1995, 52, R5467–R5470.

[102]

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

[103]

Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

[104]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[105]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[106]

Medford, A. J.; Shi, C.; Hoffmann, M. J.; Lausche, A. C.; Fitzgibbon, S. R.; Bligaard, T.; Nørskov, J. K. CatMAP: A software package for descriptor-based microkinetic mapping of catalytic trends. Catal. Lett. 2015, 145, 794–807.

[107]

Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem.—Eur. J. 2008, 15, 186–197.

[108]

Jiang, F.; Wang, S. S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y. B.; Liu, X. H. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS Catal. 2020, 10, 11493–11509.

[109]

Tost, A.; Widmann, D.; Behm, R. J. Stable active oxygen on mesoporous Au/TiO2 supported catalysts and its correlation with the CO oxidation activity. J. Catal. 2009, 266, 299–307.

[110]

Yin, P.; Yu, J.; Wang, L.; Zhang, J.; Jie, Y.; Chen, L. F.; Zhao, X. J.; Feng, H. S.; Yang, Y. S.; Xu, M. et al. Water–gas-shift reaction on Au/TiO2− x catalysts with various TiO2 crystalline phases: A theoretical and experimental study. J. Phys. Chem. C 2021, 125, 20360–20372.

[111]

Liu, X. Y.; Ma, Z. Y.; Gao, X. H.; Bai, M. M.; Ma, Y. J.; Meng, Y. Water gas shift reaction activity on Fe (110): A DFT study. Catalysts 2022, 12, 27.

[112]

Wang, R. Y.; Guo, L. J.; Jin, H.; Lu, L. B.; Yi, L.; Zhang, D. M.; Chen, J. DFT study of the enhancement on hydrogen production by alkaline catalyzed water gas shift reaction in supercritical water. Int. J. Hydrogen Energy 2018, 43, 13879–13886.

[113]

Zhu, M. H.; Wachs, I. E. Determining number of active sites and TOF for the high-temperature water gas shift reaction by iron oxide-based catalysts. ACS Catal. 2016, 6, 1764–1767.

[114]

Keturakis, C. J.; Zhu, M. H.; Gibson, E. K.; Daturi, M.; Tao, F.; Frenkel, A. I.; Wachs, I. E. Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water–gas shift reaction: Molecular structures and reactivity. ACS Catal. 2016, 6, 4786–4798.

[115]

Gunawardana, P. V. D. S.; Lee, H. C.; Kim, D. H. Performance of copper–ceria catalysts for water gas shift reaction in medium temperature range. Int. J. Hydrogen Energy 2009, 34, 1336–1341.

[116]

Na, H. S.; Shim, J. O.; Ahn, S. Y.; Jang, W. J.; Jeon, K. W.; Kim, H. M.; Lee, Y. L.; Kim, K. J.; Roh, H. S. Effect of precipitation sequence on physicochemical properties of CeO2 support for hydrogen production from low-temperature water–gas shift reaction. Int. J. Hydrogen Energy 2018, 43, 17718–17725.

Nano Research
Pages 8627-8637
Cite this article:
Wang S-F, Li Y, Wang H, et al. Theoretical and experimental investigations on single-atom catalysis: Pt1/FeOx for water–gas shift reaction. Nano Research, 2024, 17(9): 8627-8637. https://doi.org/10.1007/s12274-024-6655-9
Topics:

690

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 13 February 2024
Revised: 10 March 2024
Accepted: 24 March 2024
Published: 23 July 2024
© Tsinghua University Press 2024
Return