Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Bone tissue engineering provides a promising strategy for the treatment of bone defects. Nonetheless, the clinical utilization of biomaterial-based scaffolds is constrained by their inadequate mechanical strength and absence of osteo-inductive properties. Here, we proposed to endow nano-scaffold (NS) constructed by coaxial electrospinning technique with enhanced osteogenic bioactivities and mechanical properties by incorporating biocompatible magnetic iron oxide nanoparticles (IONPs) and icaritin (ICA). Four types of nano-scaffolds (NS, ICA@NS, NS-IONPs and ICA@NS-IONPs) were prepared. The incorporation of ICA and IONPs minimally impact their surface morphological and chemical properties. IONPs enhanced the mechanical properties of NS scaffolds, including hardness, tensile strength, and elastic modulus. In vitro assessments demonstrated that ICA@NS-IONPs exhibited enhanced osteogenic bioactivities towards mouse calvarial pre-osteoblast cell line MC3T3-E1 as evidenced by detecting the alkaline phosphatase (ALP) activity level, expressions of osteogenesis-related genes and proteins as well as mineralized nodule formation. Mechanistic investigations revealed that MEK/ERK (MAP kinase-ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK)) signaling pathway could offer a plausible explanation for the osteogenic differentiation of MC3T3-E1 cells induced by ICA@NS-IONPs. Furthermore, the implantation of nano-scaffolds in rat skull defects exhibited a substantial improvement in in vivo bone regeneration. Therefore, IONPs and ICA incorporated coaxial electrospinning nano-scaffolds present a novel strategy for the optimization of scaffolds for bone tissue engineering.
Quarto, R.; Mastrogiacomo, M.; Cancedda, R.; Kutepov, S. M.; Mukhachev, V.; Lavroukov, A.; Kon, E.; Marcacci, M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 2001, 344, 385–386.
Zhu, G. Y.; Zhang, T. X.; Chen, M.; Yao, K.; Huang, X. Q.; Zhang, B.; Li, Y. Z.; Liu, J.; Wang, Y. B.; Zhao, Z. H. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021, 6, 4110–4140.
Wang, W. H.; Yeung, K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247.
Clark, A. Y.; Martin, K. E.; García, J. R.; Johnson, C. T.; Theriault, H. S.; Han, W. M.; Zhou, D. W.; Botchwey, E. A.; García, A. J. Integrin-specific hydrogels modulate transplanted human bone marrow-derived mesenchymal stem cell survival, engraftment, and reparative activities. Nat. Commun. 2020, 11, 114.
Dalfino, S.; Savadori, P.; Piazzoni, M.; Connelly, S. T.; Giannì, A. B.; Del Fabbro, M.; Tartaglia, G. M.; Moroni, L. Regeneration of critical-sized mandibular defects using 3D-printed composite scaffolds: A quantitative evaluation of new bone formation in in vivo studies. Adv. Healthcare Mater. 2023, 12, 2300128.
Fan, B. Y.; Wei, Z. J.; Feng, S. Q. Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res. 2022, 10, 35.
Gillman, C. E.; Jayasuriya, A. C. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater. Sci. Eng. C 2021, 130, 112466.
Shang, F. Q.; Yu, Y.; Liu, S. Y.; Ming, L. G.; Zhang, Y. J.; Zhou, Z. F.; Zhao, J. Y.; Jin, Y. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact. Mater. 2021, 6, 666–683.
Collins, M. N.; Ren, G.; Young, K.; Pina, S.; Reis, R. L.; Oliveira, J. M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 2021, 31, 2010609.
Ding, Y. P.; Li, W.; Zhang, F.; Liu, Z. H.; Ezazi, N. Z.; Liu, D. F.; Santos, H. A. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv. Funct. Mater. 2019, 29, 1802852.
Ding, J. X.; Zhang, J.; Li, J. N.; Li, D.; Xiao, C. S.; Xiao, H. H.; Yang, H. H.; Zhuang, X. L.; Chen, X. S. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019, 90, 1–34.
Si, Y. F.; Shi, S.; Hu, J. L. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today 2023, 48, 101723.
Li, Y.; Wang, J.; Wang, Y.; Cui, W. G. Advanced electrospun hydrogel fibers for wound healing. Compos. Part B Eng. 2021, 223, 109101.
Shuai, C. J.; Zeng, Z. C.; Yang, Y. W.; Qi, F. W.; Peng, S. P.; Yang, W. J.; He, C. X.; Wang, G. Y.; Qian, G. W. Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Mater. Des. 2020, 190, 108564.
Zhang, M.; Du, H. S.; Liu, K.; Nie, S. X.; Xu, T.; Zhang, X. Y.; Si, C. L. Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater. 2021, 4, 865–884.
Ogueri, K. S.; Laurencin, C. T. Nanofiber technology for regenerative engineering. ACS Nano 2020, 14, 9347–9363.
Li, Y.; Zhu, J. D.; Cheng, H.; Li, G. Q.; Cho, H.; Jiang, M. J.; Gao, Q.; Zhang, X. W. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021, 6, 2100410.
Zhang, X. D.; Chi, C.; Chen, J. J.; Zhang, X. D.; Gong, M.; Wang, X.; Yan, J. H.; Shi, R.; Zhang, L. Q.; Xue, J. J. Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Mater. Des. 2021, 206, 109732.
Yang, Y. Y.; Chang, S. Y.; Bai, Y. F.; Du, Y. T.; Yu, D. G. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr. Polym. 2020, 243, 116477.
Chen, H. B.; Yan, J.; Hu, S. Y.; Sun, S. W.; Zhou, F.; Liu, J.; Tang, S. J.; Zhou, Q.; Ding, H. N.; Zhang, F. M. et al. Janus fibre/sponge composite combined with IOPNs promotes haemostasis and efficient reconstruction in oral guided bone regeneration. Mater. Des. 2022, 222, 111083.
Mushtaq, A.; Zhao, R. B.; Luo, D. D.; Dempsey, E.; Wang, X. M.; Iqbal, M. Z.; Kong, X. D. Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications. Mater. Des. 2021, 197, 109269.
Li, Y.; Ye, D. W.; Li, M. X.; Ma, M.; Gu, N. Adaptive materials based on iron oxide nanoparticles for bone regeneration. ChemPhysChem 2018, 19, 1965–1979.
Li, X. Y.; Zou, Q.; Man, Y.; Li, W. Synergistic effects of novel superparamagnetic/upconversion ha material and Ti/magnet implant on biological performance and long-term in vivo tracking. Small 2019, 15, 1901617.
Filippi, M.; Dasen, B.; Guerrero, J.; Garello, F.; Isu, G.; Born, G.; Ehrbar, M.; Martin, I.; Scherberich, A. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials 2019, 223, 119468.
Xia, Y.; Sun, J. F.; Zhao, L.; Zhang, F. M.; Liang, X. J.; Guo, Y.; Weir, M. D.; Reynolds, M. A.; Gu, N.; Xu, H. H. K. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018, 183, 151–170.
Wang, Q. W.; Chen, B.; Ma, F.; Lin, S. K.; Cao, M.; Li, Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res. 2017, 10, 626–642.
Zhu, Y.; Yang, Q.; Yang, M. G.; Zhan, X. H.; Lan, F.; He, J.; Gu, Z. W.; Wu, Y. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano 2017, 11, 3690–3704.
Yu, P. J.; Zheng, L. M.; Wang, P.; Chai, S. L.; Zhang, Y. B.; Shi, T. S.; Zhang, L.; Peng, R.; Huang, C. X.; Guo, B. S. et al. Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species. Int. J. Biol. Macromol. 2020, 165, 1634–1645.
Hao, S. S.; Meng, J.; Zhang, Y.; Liu, J.; Nie, X.; Wu, F. X.; Yang, Y. L.; Wang, C.; Gu, N.; Xu, H. Y. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials 2017, 140, 16–25.
Chen, H. M.; Sun, J. F.; Wang, Z. B.; Zhou, Y.; Lou, Z. C.; Chen, B.; Wang, P.; Guo, Z. R.; Tang, H.; Ma, J. Q. et al. Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells. ACS Appl. Mater. Interfaces 2018, 10, 44279–44289.
Słupski, W.; Jawień, P.; Nowak, B. Botanicals in postmenopausal osteoporosis. Nutrients 2021, 13, 1609.
Indran, I. R.; Liang, R. L. Z.; Min, T. E.; Yong, E. L. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol. Ther. 2016, 162, 188–205.
Huang, L.; Wang, X. L.; Cao, H. J.; Li, L.; Chow, D. H. K.; Tian, L.; Wu, H.; Zhang, J. Y.; Wang, N.; Zheng, L. Z. et al. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials 2018, 182, 58–71.
He, J. P.; Feng, X.; Wang, J. F.; Shi, W. G.; Li, H.; Danilchenko, S.; Kalinkevich, A.; Zhovner, M. Icariin prevents bone loss by inhibiting bone resorption and stabilizing bone biological apatite in a hindlimb suspension rodent model. Acta Pharmacol. Sin. 2018, 39, 1760–1767.
Zhang, K. J.; Dong, J.; Lu, J.; Li, L.; Liang, H.; Jin, J.; Wang, P.; Sun, X. L.; Jiang, Q. Icaritin-incorporated porous hollow iron oxide nanostructures for promoting fracture repair. ACS Appl. Nano Mater. 2022, 5, 6597–6608.
Van Der Schueren, L.; De Schoenmaker, B.; Kalaoglu, Ö. I.; De Clerck, K. An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur. Polym. J. 2011, 47, 1256–1263.
Huang, C. X.; Ye, Q.; Dong, J.; Li, L.; Wang, M.; Zhang, Y. Y.; Zhang, Y. B.; Wang, X. C.; Wang, P.; Jiang, Q. Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation. Smart Mater. Med. 2023, 4, 1–14.
Wang, P.; Yin, B. S.; Dong, H. L.; Zhang, Y. B.; Zhang, Y. H.; Chen, R. X.; Yang, Z. K.; Huang, C. X.; Jiang, Q. Coupling biocompatible Au nanoclusters and cellulose nanofibrils to prepare the antibacterial nanocomposite films. Front Bioeng. Biotechnol. 2020, 8, 986.
Lin, G. M.; Xie, G. Y.; Sui, G. X.; Yang, R. Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites. Compos. Part B Eng. 2012, 43, 44–49.
Kotula, A. P.; Snyder, C. R.; Migler, K. B. Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 2017, 117, 1–10.
Zhou, W.; Feng, Y. K.; Yang, J.; Fan, J. X.; Lv, J.; Zhang, L.; Guo, J. T.; Ren, X. K.; Zhang, W. C. Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth. J. Mater. Sci. Mater. Med. 2015, 26, 56.
Huang, C. X.; Dong, J.; Zhang, Y. Y.; Chai, S. L.; Wang, X. C.; Kang, S. X.; Yu, D. G.; Wang, P.; Jiang, Q. Gold nanoparticles-loaded polyvinylpyrrolidone/ethylcellulose coaxial electrospun nanofibers with enhanced osteogenic capability for bone tissue regeneration. Mater. Des. 2021, 212, 110240.
Schaks, M.; Giannone, G.; Rottner, K. Actin dynamics in cell migration. Essays Biochem. 2019, 63, 483–495.
Tang, S. J.; Wang, L.; Zhang, Y. Y.; Zhang, F. M. A biomimetic platelet-rich plasma-based interpenetrating network printable hydrogel for bone regeneration. Front. Bioeng. Biotechnol. 2022, 10, 887454.
Zhang, Y. H.; Kong, N.; Zhang, Y. C.; Yang, W. R.; Yan, F. H. Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells. Theranostics 2017, 7, 1214–1224.
Zhang, Y. B.; Wang, P.; Mao, H. J.; Zhang, Y. H.; Zheng, L. M.; Yu, P. J.; Guo, Z. R.; Li, L.; Jiang, Q. PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Mater. Des. 2021, 197, 109231.
Zhang, Y. H.; Wang, P.; Wang, Y. X.; Li, J.; Qiao, D.; Chen, R. X.; Yang, W. R.; Yan, F. H. Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy. Int. J. Nanomed. 2021, 16, 61–73.
Wang, Q. W.; Chen, B.; Cao, M.; Sun, J. F.; Wu, H.; Zhao, P.; Xing, J.; Yang, Y.; Zhang, X. B.; Ji, M. et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials 2016, 86, 11–20.
Ling, Y. J.; Nie, D. K.; Huang, Y.; Deng, M. Y.; Liu, Q. Q.; Shi, J. L.; Ouyang, S. G.; Yang, Y.; Deng, S.; Lu, Z. C. et al. Antioxidant cascade nanoenzyme antagonize inflammatory pain by modulating MAPK/p-65 signaling pathway. Adv. Sci. (Weinh.) 2023, 10, e2206934.
Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632.
Granda-Díaz, R.; Manterola, L.; Hermida-Prado, F.; Rodríguez, R.; Santos, L.; García-de-la-Fuente, V.; Fernández, M. T.; Corte-Torres, M. D.; Rodrigo, J. P.; Álvarez-Teijeiro, S. et al. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed. Pharmacother. 2023, 161, 114512.
Liu, L. J.; Shang, Y. N.; Li, C. J.; Jiao, Y. J.; Qiu, Y. C.; Wang, C. Y.; Wu, Y. G.; Zhang, Q. Y.; Wang, F. J.; Yang, Z. M. et al. Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration. Adv. Healthc. Mater. 2021, 10, 2170106