AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The configuration of Auδ+-ZrO2δ species induced activation enhances electrocatalytic CO2 to formate conversion

Yongjian Jia1,2( )Yadi Zhang1,2Mengque Lin1,2Yangyang Cheng1,2Yanjie Xu3
National Engineering Research Center for Technology and Equipment of Environmental Deposition, Lanzhou Jiaotong University, Lanzhou 730070, China
Key Lab of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China
School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
Show Author Information

Graphical Abstract

The configuration of Auδ+ species and ZrO2δ species generated by metal–support interactions (MSIs) enhances the CO2 conversion to formate with 94.1% Faradaic efficiency (FE).

Abstract

Electrochemical CO2 conversion into value-added chemicals is a promising technology to solve the greenhouse effect and recycle chemical energy. However, the electrochemical CO2 reduction reaction (e-CO2RR) is seriously compromised by weak CO2 adsorption and a rough CO2 activation process based on the chemical inertness of the CO2 molecule and the formed fragile metal–C/O bond. In this paper, we designed and fabricated Au particles embedded in ZrO2. The configuration of Au particles being of positive charge and ZrO2 with negative charge is induced and generated by metal–support interactions (MSIs). As a result, Au/ZrO2@C presents a big difference in the CO2 conversion compared with the known work, affording a formate yield of 112.5 μmol·cm−2·h−1 at −1.1 V vs. reversible hydrogen electrode (RHE), and a max formate Faradaic efficiency of up to 94.1% at −0.9 V vs. RHE. This superior performance was attributed to the activated Au–ZrO2 interface to form the Auδ+ species. Both in-situ Fourier transform infrared (FTIR) spectroscopy and theoretical calculations show that the MSIs configuration can be inclined to the *OCO intermediate generation on Auδ+ species activating CO2 molecules and then accelerate the formation of the *OCHO intermediate in e-CO2RR, thereby favoring the CO2 conversion to formate.

Electronic Supplementary Material

Download File(s)
6657_ESM.pdf (2 MB)

References

[1]

Huang, J. P.; Yu, H. P.; Guan, X. D.; Wang, G. Y.; Guo, R. X. Accelerated dryland expansion under climate change. Nat. Climate Chage 2016, 6, 166–171.

[2]

Kar, S.; Sen, R.; Goeppert, A.; Prakash, G. K. S. Integrative CO2 capture and hydrogenation to methanol with reusable catalyst and amine: Toward a carbon neutral methanol economy. J. Am. Chem. Soc. 2018, 140, 1580–1583.

[3]

Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.

[4]

Bediako, B. B. A.; Qian, Q. L.; Han, B. X. Synthesis of C2+ chemicals from CO2 and H2 via C–C bond formation. Acc. Chem. Res. 2021, 54, 2467–2476.

[5]

Bierbaumer, S.; Nattermann, M.; Schulz, L.; Zschoche, R.; Erb, T. J.; Winkler, C. K.; Tinzl, M.; Glueck, S. M. Enzymatic conversion of CO2: From natural to artificial utilization. Chem. Rev. 2023, 123, 5702–5754.

[6]

Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973

[7]

Kumagai, H.; Tamaki, Y.; Ishitani, O. Photocatalytic systems for CO2 reduction: Metal-complex photocatalysts and their hybrids with photofunctional solid materials. Acc. Chem. Res. 2022, 55, 978–990.

[8]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[9]

Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar-versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

[10]

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[11]

Ge, L.; Rabiee, H.; Li, M. R.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8, 663–692.

[12]

Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

[13]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[14]

Huang, H. M.; Song, H.; Kou, J. H.; Lu, C. H.; Ye, J. H. Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. J. Energy Chem. 2022, 67, 309–341.

[15]

Zhang, Z. Q.; Xu, J. Y.; Zhang, Y.; Zhao, L. P.; Li, M.; Zhong, G. Q.; Zhao, D.; Li, M. J.; Hu, X. D.; Zhu, W. J. et al. Porous metal oxides in the role of electrochemical CO2 reduction reaction. J. Energy Chem. 2024, 88, 373–398.

[16]

Saha, P.; Amanullah, S.; Dey, A. Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 2022, 55, 134–144.

[17]

Melchionna, M.; Fornasiero, P.; Prato, M.; Bonchio, M. Electrocatalytic CO2 reduction: Role of the cross-talk at nano-carbon interfaces. Energy Environ. Sci. 2021, 14, 5816–5833.

[18]

Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

[19]

Bachiller-Baeza, B.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Interaction of carbon dioxide with the surface of zirconia polymorphs. Langmuir 1998, 14, 3556–3564.

[20]

Li, X. T.; Liu, Q.; Wang, J. H.; Meng, D. C.; Shu, Y. J.; Lv, X. Z.; Zhao, B.; Yang, H.; Cheng, T.; Gao, Q. S. et al. Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 2022, 8, 2148–2162.

[21]

Guo, P. P.; He, Z. H.; Yang, S. Y.; Wang, W. T.; Wang, K.; Li, C. C.; Wei, Y. Y.; Liu, Z. T.; Han, B. X. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022, 24, 1527–1533.

[22]

Miao, Z. P.; Hu, P.; Nie, C. Y.; Xie, H.; Fu, W. L.; Li, Q. ZrO2 nanoparticles anchored on nitrogen-doped carbon nanosheets as efficient catalyst for electrochemical CO2 reduction. J. Energy Chem. 2019, 38, 114–118.

[23]

Wang, X. Y.; Feng, S. H.; Lu, W. C.; Zhao, Y. J.; Zheng, S. X.; Zheng, W. Z.; Sang, X. H.; Zheng, L. R.; Xie, Y.; Li, Z. J. et al. A new strategy for accelerating dynamic proton transfer of electrochemical CO2 reduction at high current densities. Adv. Func. Mater. 2021, 31, 2104243.

[24]

Jiang, Y. Q.; Cheng, G.; Li, Y. H.; He, Z. X.; Zhu, J.; Meng, W.; Dai, L.; Wang, L. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework. Chem. Eng. J. 2021, 415, 129014.

[25]

Rogers, C.; Perkins, W. S.; Veber, G.; Williams, T. E.; Cloke, R. R.; Fischer, F. R. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J. Am. Chem. Soc. 2017, 139, 4052–4061.

[26]

Chen, S. L.; Abdel-Mageed, A. M.; Mochizuki, C.; Ishida, T.; Murayama, T.; Rabeah, J.; Parlinska-Wojtan, M.; Brückner, A.; Behm, R. J. Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size. ACS Catal. 2021, 11, 9022–9033.

[27]

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeO x . Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

[28]

Fu, H. Q.; Liu, J. X.; Bedford, N. M.; Wang, Y.; Sun, J. W.; Zou, Y.; Dong, M. Y.; Wright, J.; Diao, H.; Liu, P. R. et al. Synergistic Cr2O3@Ag heterostructure enhanced electrocatalytic CO2 reduction to CO. Adv. Mater. 2022, 34, 2202854.

[29]

Chu, S.; Ou, P. F.; Ghamari, P.; Vanka, S.; Zhou, B. W.; Shih, I.; Song, J.; Mi, Z. T. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 2018, 140, 7869–7877.

[30]

Otor, H. O.; Steiner, J. B.; García-Sancho, C.; Alba-Rubio, A. C. Encapsulation methods for control of catalyst deactivation: A review. ACS Catal. 2020, 10, 7630–7656.

[31]

Wang, Q. R.; Yang, X. F.; Zang, H.; Liu, C. J.; Wang, J. H.; Yu, N.; Kuai, L.; Qin, Q.; Geng, B. Y. InBi bimetallic sites for efficient electrochemical reduction of CO2 to HCOOH. Small 2023, 19, 2303172.

[32]

Wei, B.; Xiong, Y. S.; Zhang, Z. Y.; Hao, J. H.; Li, L. H.; Shi, W. D. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl. Catal. B: Environ. 2021, 283, 119646.

[33]

Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic co2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

[34]

Xing, Y. L.; Kong, X. D.; Guo, X.; Liu, Y.; Li, Q. Y.; Zhang, Y. Z.; Sheng, Y. L.; Yang, X. P.; Geng, Z. G.; Zeng, J. Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 2020, 7, 1902989.

[35]

Zhang, Y.; Chen, H. X.; Duan, L.; Fan, J. B.; Ni, L.; Ji, V. A comparison study of the structural and mechanical properties of cubic, tetragonal, monoclinic, and three orthorhombic phases of ZrO2. J. Alloys Compd. 2018, 749, 283–292.

[36]

Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

[37]

Yuan, L. P.; Jiang, W. J.; Liu, X. L.; He, Y. H.; He, C.; Tang, T.; Zhang, J. N.; Hu, J. S. Molecularly engineered strong metal oxide–support interaction enables highly efficient and stable CO2 electroreduction. ACS Catal. 2020, 10, 13227–13235.

[38]

Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

[39]

Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

[40]

Xie, M. C.; Shen, Y.; Ma, W. C.; Wei, D. Y.; Zhang, B.; Wang, Z. H.; Wang, Y. H.; Zhang, Q. H.; Xie, S. J.; Wang, C. et al. Fast screening for copper-based bimetallic electrocatalysts: Efficient electrocatalytic reduction of CO2 to C2+ products on magnesium-modified copper. Angew. Chem., Int. Ed. 2022, 61, e202213423.

[41]

Zhang, Y.; Gao, X. P.; Weaver, M. J. Nature of surface bonding on voltammetrically oxidized noble metals in aqueous media as probed by real-time surface-enhanced Raman spectroscopy. J. Phys. Chem. 1993, 97, 8656–8663.

[42]

Xu, Y. J.; Wang, F.; Lei, S. L.; Wei, Y.; Zhao, D.; Gao, Y. H.; Ma, X.; Li, S. J.; Chang, S. Q.; Wang, M. Q. et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem. Eng. J. 2023, 452, 139392.

Nano Research
Pages 6006-6015
Cite this article:
Jia Y, Zhang Y, Lin M, et al. The configuration of Auδ+-ZrO2δ species induced activation enhances electrocatalytic CO2 to formate conversion. Nano Research, 2024, 17(7): 6006-6015. https://doi.org/10.1007/s12274-024-6657-7
Topics:

546

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 December 2023
Revised: 18 March 2024
Accepted: 24 March 2024
Published: 13 May 2024
© Tsinghua University Press 2024
Return