AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Artificial synthesis of polyesters at ambient condition via consecutive CO2 electrolysis and fermentation

Guiru Zhang1,2,§Ning Ji1,§Shiheng Lyu1,§Baoxin Ni2Peng Shen2Ke Ye2Yuting Wang1Xuheng Jiang3Hai Zhang2Xi Liu3( )Yongcheng Wang1( )Kun Jiang2( )
Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
In-situ Centre for Physical Sciences, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Guiru Zhang, Ning Ji, and Shiheng Lyu contributed equally to this work.

Show Author Information

Graphical Abstract

A tandem system of solid-state CO2 electrolyzer and Ralstonia eutropha fermenter has been demonstrated for the artificial synthesis of biodegradable polyhydroxybutyrate plastic from CO2 building blocks at room temperature.

Abstract

Electrochemically converting CO2 into value-added chemicals is a promising approach to mitigate anthropogenic carbon emissions, yet largely limited to short-chained C1–C3 products. Herein, we demonstrate a tandem artificial synthesis of biodegradable polyhydroxybutyrate (PHB) plastic from CO2 building blocks. Batch synthesis of defects-enriched Bi catalyst is firstly demonstrated by plasma bombardment and following in situ electrochemical reduction, which delivers a HCOOH Faradaic efficiency above 80% at tunable concentration from 2 to 250 mM, an energy efficiency up to 41%, and a single-pass carbon conversion efficiency up to 60%. Annular dark field and second electron microscopic analysis, density functional theory (DFT) calcualtions, coupled with H-type and solid-state electrolyzer assessments, point out the vital role of defective and/or stepped Bi surface sites in promoting CO2-to-HCOOH conversion. Thereafter, as-synthesized high-purity HCOOH is used as the sole carbon source for C-chain growth within microbial fermentation reactor with Ralstonia eutropha, where activated formate dehydrogenase and increased metabolites related to Calvin–Benson–Bassham cycle are found to be responsible for the enhanced polyester accumulation.

Electronic Supplementary Material

Download File(s)
6658_ESM.pdf (2.1 MB)

References

[1]

Peplow, M. The race to upcycle CO2 into fuels, concrete and more. Nature 2022, 603, 780–783.

[2]

Meys, R.; Kätelhön, A.; Bachmann, M.; Winter, B.; Zibunas, C.; Suh, S.; Bardow, A. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 2021, 374, 71–76.

[3]

Shin, H.; Hansen, K. U.; Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 2021, 4, 911–919.

[4]

Fang, W. S.; Guo, W.; Lu, R. H.; Yan, Y.; Liu, X. K.; Wu, D.; Li, F. M.; Zhou, Y. S.; He, C. H.; Xia, C. F. et al. Durable CO2 conversion in the proton-exchange membrane system. Nature 2024, 626, 86–91.

[5]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[6]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[7]

Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 2022, 7, 130–143.

[8]

Zhang, G. R.; Ye, K.; Ni, B. X.; Jiang, K. Steering the products distribution of CO2 electrolysis: A perspective on extrinsic tuning knobs. Chem Catal. 2023, 3, 100746.

[9]

Zhou, Y. S.; Martín, A. J.; Dattila, F.; Xi, S. B.; López, N.; Pérez-Ramírez, J.; Yeo, B. S. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 2022, 5, 545–554.

[10]

Li, H.; Opgenorth, P. H.; Wernick, D. G.; Rogers, S.; Wu, T. Y.; Higashide, W.; Malati, P.; Huo, Y. X.; Cho, K. M.; Liao, J. C. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 2012, 335, 1596.

[11]

Torella, J. P.; Gagliardi, C. J.; Chen, J. S.; Bediako, D. K.; Colón, B.; Way, J. C.; Silver, P. A.; Nocera, D. G. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. USA 2015, 112, 2337–2342.

[12]

Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C. Y.; Yang, P. D. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 2015, 15, 3634–3639.

[13]

Chatzipanagiotou, K. R.; Jourdin, L.; Buisman, C. J. N.; Strik, D. P. B. T. B.; Bitter, J. H. CO2 conversion by combining a copper electrocatalyst and wild-type microorganisms. ChemCatChem 2020, 12, 3900–3912

[14]

Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

[15]

Chen, X. L.; Cao, Y. X.; Li, F.; Tian, Y.; Song, H. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered Ralstonia eutropha. ACS Catal. 2018, 8, 4429–4437.

[16]

Lim, J.; Choi, S. Y.; Lee, J. W.; Lee, S. Y.; Lee, H. Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2. Proc. Natl. Acad. Sci. USA 2023, 120, e2221438120.

[17]

Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 2018, 1, 32–39.

[18]

Zheng, T. T.; Zhang, M. L.; Wu, L. H.; Guo, S. Y.; Liu, X. J.; Zhao, J. K.; Xue, W. Q.; Li, J. W.; Liu, C. X.; Li, X. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 2022, 5, 388–396.

[19]

Hann, E. C.; Overa, S.; Harland-Dunaway, M.; Narvaez, A. F.; Le, D. N.; Orozco-Cárdenas, M. L.; Jiao, F.; Jinkerson, R. E. A hybrid inorganic-biological artificial photosynthesis system for energy-efficient food production. Nat. Food 2022, 3, 461–471.

[20]

Kibria, G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[21]

Claassens, N. J.; Cotton, C. A. R.; Kopljar, D.; Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2019, 2, 437–447.

[22]

Stöckl, M.; Harms, S.; Dinges, I.; Dimitrova, S.; Holtmann, D. From CO2 to bioplastic-coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis. ChemSusChem 2020, 13, 4086–4093.

[23]

Ye, K.; Zhang, G. R.; Ma, X. Y.; Deng, C. W.; Huang, X.; Yuan, C. H.; Meng, G.; Cai, W. B.; Jiang, K. Resolving local reaction environment toward an optimized CO2-to-CO conversion performance. Energy Environ. Sci. 2022, 15, 749–759.

[24]

Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitsk, E.; Alshareef, H. N.; Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 2019, 4, 776–785.

[25]

Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

[26]
Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry 42; Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008: pp 89–189.
[27]

Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

[28]

Liu, X. H.; Zhang, S. L.; Guo, S. Y.; Cai, B.; Yang, S. A.; Shan, F. K.; Pumera, M.; Zeng, H. B. Advances of 2D bismuth in energy sciences. Chem. Soc. Rev. 2020, 49, 263–285.

[29]

Jiang, K.; Huang, Y. D.; Zeng, G. S.; Toma, F. M.; Goddard III, W. A.; Bell, A. T. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett. 2020, 5, 1206–1214.

[30]

Chen, H. N.; Li, K.; Yang, M. J.; Zhang, Z.; Kong, Y.; Lu, Q.; Du, Y. Effect of electron beam irradiation in TEM on the microstructure and composition of nanoprecipitates in Al-Mg-Si alloys. Micron 2019, 116, 116–123.

[31]

Hooley, R.; Brown, A.; Brydson, R. Factors affecting electron beam damage in calcite nanoparticles. Micron 2019, 120, 25–34.

[32]

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

[33]

Pereira, A. L. J.; Errandonea, D.; Beltrán, A.; Gracia, L.; Gomis, O.; Sans, J. A.; García-Domene, B.; Miquel-Veyrat, A.; Manjón, F. J.; Muñoz, A. et al. Structural study of α-Bi2O3 under pressure. J. Phys. Condens. Matter 2013, 25, 475402.

[34]

Luo, Y. Q.; Chen, S. H.; Zhang, J.; Ding, X.; Pan, B. B.; Wang, L. G.; Lu, J.; Cao, M. H.; Li, Y. G. Perovskite-derived bismuth with I and Cs+ dual modification for high-efficiency CO2-to-formate electrosynthesis and Al-CO2 batteries. Adv. Mater. 2023, 35, 2303297.

[35]

Liu, X. J.; Zhang, K.; Sun, Y. D.; Zhang, S. K.; Qiu, Z. Y.; Song, T. S.; Xie, J. J.; Wu, Y. P.; Chen, Y. H. Upgrading CO2 into acetate on Bi2O3@carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis. SusMat 2023, 3, 235–247.

[36]

Steele, J. A.; Lewis, R. A. In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands. Opt. Mater. Express 2014, 4, 2133–2142.

[37]

Bian, G.; Wang, X.; Miller, T.; Chiang, T. C.; Kowalczyk, P. J.; Mahapatra, O.; Brown, S. A. First-principles and spectroscopic studies of Bi (110) films: Thickness-dependent Dirac modes and property oscillations. Phys. Rev. B 2014, 90, 195409.

[38]

Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118625.

[39]

Zhang, C.; Hao, X. B.; Wang, J. T.; Ding, X. Y.; Zhong, Y.; Jiang, Y. W.; Wu, M. C.; Long, R.; Gong, W. B.; Liang, C. H. et al. Concentrated formic acid from CO2 electrolysis for directly driving fuel cell. Angew. Chem., Int. Ed. 2024, 64, e202317628.

[40]

Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

[41]

Jia, G. R.; Wang, Y.; Sun, M. Z.; Zhang, H.; Li, L. J.; Shi, Y. B.; Zhang, L. Z.; Cui, X. Q.; Lo, T. W. B.; Huang, B. L. et al. Size effects of highly dispersed bismuth nanoparticles on electrocatalytic reduction of carbon dioxide to formic acid. J. Am. Chem. Soc. 2023, 145, 14133–14142.

[42]

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

[43]

Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

[44]

Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2, 0105.

[45]

Blakers, A.; Zin, N.; McIntosh, K. R.; Fong, K. High efficiency silicon solar cells. Energy Procedia 2013, 33, 1–10.

[46]

Simon, R.; Priefer, U.; Pühler, A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Bio/Technology 1983, 1, 784–791.

[47]

Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

[48]

Zhang, P.; Chen, K. N.; Xu, B.; Li, J.; Hu, C.; Yuan, J. S.; Dai, S. Y. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem, 2022, 8, 3363–3381

[49]

Ye, D. Y.; Li, X. W.; Shen, J. Z.; Xia, X. Microbial metabolomics: From novel technologies to diversified applications. TrAC Trends Anal. Chem. 2022, 148, 116540.

[50]

Bar-Even, A.; Noor, E.; Lewis, N. E.; Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 8889–8894.

[51]

Bang, J.; Hwang, C. H.; Ahn, J. H.; Lee, J. A.; Lee, S. Y. Escherichia coli is engineered to grow on CO2 and formic acid. Nat. Microbiol. 2020, 5, 1459–1463

Nano Research
Pages 6016-6025
Cite this article:
Zhang G, Ji N, Lyu S, et al. Artificial synthesis of polyesters at ambient condition via consecutive CO2 electrolysis and fermentation. Nano Research, 2024, 17(7): 6016-6025. https://doi.org/10.1007/s12274-024-6658-6
Topics:

544

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 20 February 2024
Revised: 19 March 2024
Accepted: 24 March 2024
Published: 02 May 2024
© Tsinghua University Press 2024
Return