AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Boosting ammonia production in electrocatalytic NOx reduction on a robust Fe/FeMoO4 catalyst

Dong-Xue Liu1,2,§Xin Deng1,§Yong-Fu Zhu1Zhe Meng1Xue-Feng Sun1Miao-Miao Shi1Hai-Xia Zhong2( )Jun-Min Yan1( )
Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

§ Dong-Xue Liu and Xin Deng contributed equally to this work.

Show Author Information

Graphical Abstract

Electrocatalytic synthesis of ammonia from NOx can solve environmental pollutants as well asproduce high value-added ammonia products, among which Fe/FeMoO4 catalyst showsexcellent performance in both neutral and alkaline systems, which is conducive to furtherexploration of practical applications.

Abstract

Electrocatalytic reduction of nitrate (NO3) and nitride (NO2) to ammonia (NH3) is of wide interest as a promising alternative to the energy-intensive Haber-Bosch route for mitigating the vast energy consumption and the accompanied carbon dioxide emission, as well as benefiting for the relevant sewage treatment. However, exploring an efficient and low-cost catalyst with high atomic utilization that can effectively facilitate the slow multi-electron transfer process remains a grand challenge. Herein, we present an efficient hydrogenation of NO3/NO2 species to NH3 in both alkaline and neutral environments over the Fe2(MoO4)3 derived hybrid electrocatalyst with the metallic Fe site on FeMoO4 (Fe/FeMoO4). The Mo ingredient can play a synergistically positive role in further promoting the NH3 production on Fe. As a result, Fe/FeMoO4 behaves well in the electrochemical NH3 generation from NO2 with a maximum NH3 Faradaic efficiency (FE) of 96.53% and 87.68% in alkaline and neutral electrolyte, corresponding to the NH3 yield rate of 640.68 and 302.56 mg·h−1·mgcat. −1, respectively, which outperforms the Fe and Mo counterpart and other similar catalyst, showing the robust catalytic capacity of each active site.

Electronic Supplementary Material

Download File(s)
6661_ESM.pdf (8.4 MB)

References

[1]

Zheng, J. Y.; Jiang, L.; Lyu, Y. H.; Jiang, S. P.; Wang, S. Y. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future. Energy Environ. Mater. 2022, 5, 452–457.

[2]

Li, J. C.; Li, M.; An, N.; Zhang, S.; Song, Q. A.; Yang, Y. L.; Li, J.; Liu, X. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. USA 2022, 119, e2123450119.

[3]

Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

[4]

Sun, B. T.; Lu, S. C.; Qian, Y. Y.; Zhang, X. L.; Tian, J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy 2023, 5, e305.

[5]

Zhang, X. X.; Cao, Y. H.; Huang, Z. F.; Zhang, S. S.; Liu, C. G.; Pan, L.; Shi, C. X.; Zhang, X. W.; Zhou, Y.; Yang, G. D. et al. Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N2 electroreduction activity. Carbon Energy 2023, 5, e266.

[6]

Chen, K.; Shen, P.; Zhang, N. N.; Ma, D. W.; Chu, K. Electrocatalytic NO reduction to NH3 on Mo2C nanosheets. Inorg. Chem. 2023, 62, 653–658.

[7]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[8]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[9]

Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

[10]

He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

[11]

Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.

[12]

Zhang, S. B.; Han, M. M.; Shi, T. F.; Zhang, H. M.; Lin, Y.; Zheng, X. S.; Zheng, L. R.; Zhou, H. J.; Chen, C.; Zhang, Y. X. et al. Atomically dispersed bimetallic Fe-Co electrocatalysts for green production of ammonia. Nat. Sustain. 2023, 6, 169–179.

[13]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

[14]

Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed. 2023, 62, e202300054.

[15]

Luo, H. X.; Li, S. J.; Wu, Z. Y.; Liu, Y. B.; Luo, W.; Li, W.; Zhang, D. Q.; Chen, J.; Yang, J. P. Modulating the active hydrogen adsorption on Fe-N interface for boosted electrocatalytic nitrate reduction with ultra-long stability. Adv. Mater. 2023, 35, 202304695.

[16]

Zhang, F. Z.; Luo, J. M.; Chen, J. L.; Luo, H. X.; Jiang, M. M.; Yang, C. X.; Zhang, H.; Chen, J.; Dong, A. G.; Yang, J. P. Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction. Angew. Chem., Int. Ed. 2023, 62, e202310383.

[17]

Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2022, 62, e202217071.

[18]

Li, X. T.; Wang, S. Y.; Wang, G. H.; Shen, P.; Ma, D. W.; Chu, K. Mo2C for electrocatalytic nitrate reduction to ammonia. Dalton Trans. 2022, 51, 17547–17552.

[19]

Li, J.; Zhang, Y.; Liu, C.; Zheng, L. R.; Petit, E.; Qi, K.; Zhang, Y.; Wu, H. L.; Wang, W. S.; Tiberj, A. et al. 3.4% solar-to-ammonia efficiency from nitrate using fe single atomic catalyst supported on MoS2 nanosheets. Adv. Funct. Mater. 2022, 32, 2108316.

[20]

Abbott, D. F.; Xu, Y. Z.; Kuznetsov, D. A.; Kumar, P.; Müller, C. R.; Fedorov, A.; Mougel, V. Understanding the synergy between Fe and Mo sites in the nitrate reduction reaction on a bio-inspired bimetallic MXene electrocatalyst. Angew. Chem., Int. Ed. 2023, 62, e202313746.

[21]

Stoyanova, A.; Iordanova, R.; Mancheva, M.; Dimitriev, Y. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. J. Optoelectron. Adv. Mater. 2009, 11, 1127–1131.

[22]

Jin, G. J.; Weng, W. H.; Lin, Z. J.; Dummer, N. F.; Taylor, S. H.; Kiely, C. J.; Bartley, J. K.; Hutchings, G. J. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. J. Catal. 2012, 296, 55–64.

[23]

Han, D. D.; Xu, S. C.; Or, S. W.; Ho, S. L.; Liu, B. The one-pot syntheses of Fe@(C, N) nanocapsules for electromagnetic absorption at gigahertz. Mater. Lett. 2017, 198, 69–72.

[24]

Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

[25]

Yao, J. X.; Zhou, Y. T.; Yan, J. M.; Jiang, Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions. Adv. Energy Mater. 2021, 11, 2003701.

[26]

Bai, S. L.; Chen, S.; Chen, L. Y.; Zhang, K. W.; Luo, R. X.; Li, D. Q.; Liu, C. C. Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sens. Actuators B Chem. 2012, 174, 51–58.

[27]

Liu, D. X.; Meng, Z.; Zhu, Y. F.; Sun, X. F.; Deng, X.; Shi, M. M.; Hao, Q.; Kang, X.; Dai, T. Y.; Zhong, H. X. et al. Gram-level NH3 electrosynthesis via NO x reduction on a Cu activated Co electrode. Angew. Chem., Int. Ed. 2024, 63, e202315238.

[28]

Ataka, K. I.; Yotsuyanagi, T.; Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 1996, 100, 10664–10672.

[29]

Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.

[30]

Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 202209890.

[31]

Hao, R.; Tian, L.; Wang, C.; Wang, L.; Liu, Y. P.; Wang, G. C.; Li, W.; Ozin, G. A. Pollution to solution: A universal electrocatalyst for reduction of all NO x -based species to NH3. Chem Catal. 2022, 2, 622–638.

[32]

Zhou, J.; Wen, M.; Huang, R.; Wu, Q. S.; Luo, Y. X.; Tian, Y. K.; Wei, G. F.; Fu, Y. Q. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611–2620.

[33]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

Nano Research
Pages 5801-5806
Cite this article:
Liu D-X, Deng X, Zhu Y-F, et al. Boosting ammonia production in electrocatalytic NOx reduction on a robust Fe/FeMoO4 catalyst. Nano Research, 2024, 17(7): 5801-5806. https://doi.org/10.1007/s12274-024-6661-y
Topics:

462

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 15 January 2024
Revised: 13 March 2024
Accepted: 24 March 2024
Published: 19 April 2024
© Tsinghua University Press 2024
Return