Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrocatalytic reduction of nitrate (NO3−) and nitride (NO2−) to ammonia (NH3) is of wide interest as a promising alternative to the energy-intensive Haber-Bosch route for mitigating the vast energy consumption and the accompanied carbon dioxide emission, as well as benefiting for the relevant sewage treatment. However, exploring an efficient and low-cost catalyst with high atomic utilization that can effectively facilitate the slow multi-electron transfer process remains a grand challenge. Herein, we present an efficient hydrogenation of NO3−/NO2− species to NH3 in both alkaline and neutral environments over the Fe2(MoO4)3 derived hybrid electrocatalyst with the metallic Fe site on FeMoO4 (Fe/FeMoO4). The Mo ingredient can play a synergistically positive role in further promoting the NH3 production on Fe. As a result, Fe/FeMoO4 behaves well in the electrochemical NH3 generation from NO2− with a maximum NH3 Faradaic efficiency (FE) of 96.53% and 87.68% in alkaline and neutral electrolyte, corresponding to the NH3 yield rate of 640.68 and 302.56 mg·h−1·mgcat. −1, respectively, which outperforms the Fe and Mo counterpart and other similar catalyst, showing the robust catalytic capacity of each active site.
Zheng, J. Y.; Jiang, L.; Lyu, Y. H.; Jiang, S. P.; Wang, S. Y. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future. Energy Environ. Mater. 2022, 5, 452–457.
Li, J. C.; Li, M.; An, N.; Zhang, S.; Song, Q. A.; Yang, Y. L.; Li, J.; Liu, X. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. USA 2022, 119, e2123450119.
Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.
Sun, B. T.; Lu, S. C.; Qian, Y. Y.; Zhang, X. L.; Tian, J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy 2023, 5, e305.
Zhang, X. X.; Cao, Y. H.; Huang, Z. F.; Zhang, S. S.; Liu, C. G.; Pan, L.; Shi, C. X.; Zhang, X. W.; Zhou, Y.; Yang, G. D. et al. Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N2 electroreduction activity. Carbon Energy 2023, 5, e266.
Chen, K.; Shen, P.; Zhang, N. N.; Ma, D. W.; Chu, K. Electrocatalytic NO reduction to NH3 on Mo2C nanosheets. Inorg. Chem. 2023, 62, 653–658.
Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.
Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.
Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.
He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.
Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.
Zhang, S. B.; Han, M. M.; Shi, T. F.; Zhang, H. M.; Lin, Y.; Zheng, X. S.; Zheng, L. R.; Zhou, H. J.; Chen, C.; Zhang, Y. X. et al. Atomically dispersed bimetallic Fe-Co electrocatalysts for green production of ammonia. Nat. Sustain. 2023, 6, 169–179.
Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.
Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed. 2023, 62, e202300054.
Luo, H. X.; Li, S. J.; Wu, Z. Y.; Liu, Y. B.; Luo, W.; Li, W.; Zhang, D. Q.; Chen, J.; Yang, J. P. Modulating the active hydrogen adsorption on Fe-N interface for boosted electrocatalytic nitrate reduction with ultra-long stability. Adv. Mater. 2023, 35, 202304695.
Zhang, F. Z.; Luo, J. M.; Chen, J. L.; Luo, H. X.; Jiang, M. M.; Yang, C. X.; Zhang, H.; Chen, J.; Dong, A. G.; Yang, J. P. Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction. Angew. Chem., Int. Ed. 2023, 62, e202310383.
Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2022, 62, e202217071.
Li, X. T.; Wang, S. Y.; Wang, G. H.; Shen, P.; Ma, D. W.; Chu, K. Mo2C for electrocatalytic nitrate reduction to ammonia. Dalton Trans. 2022, 51, 17547–17552.
Li, J.; Zhang, Y.; Liu, C.; Zheng, L. R.; Petit, E.; Qi, K.; Zhang, Y.; Wu, H. L.; Wang, W. S.; Tiberj, A. et al. 3.4% solar-to-ammonia efficiency from nitrate using fe single atomic catalyst supported on MoS2 nanosheets. Adv. Funct. Mater. 2022, 32, 2108316.
Abbott, D. F.; Xu, Y. Z.; Kuznetsov, D. A.; Kumar, P.; Müller, C. R.; Fedorov, A.; Mougel, V. Understanding the synergy between Fe and Mo sites in the nitrate reduction reaction on a bio-inspired bimetallic MXene electrocatalyst. Angew. Chem., Int. Ed. 2023, 62, e202313746.
Stoyanova, A.; Iordanova, R.; Mancheva, M.; Dimitriev, Y. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. J. Optoelectron. Adv. Mater. 2009, 11, 1127–1131.
Jin, G. J.; Weng, W. H.; Lin, Z. J.; Dummer, N. F.; Taylor, S. H.; Kiely, C. J.; Bartley, J. K.; Hutchings, G. J. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. J. Catal. 2012, 296, 55–64.
Han, D. D.; Xu, S. C.; Or, S. W.; Ho, S. L.; Liu, B. The one-pot syntheses of Fe@(C, N) nanocapsules for electromagnetic absorption at gigahertz. Mater. Lett. 2017, 198, 69–72.
Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.
Yao, J. X.; Zhou, Y. T.; Yan, J. M.; Jiang, Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions. Adv. Energy Mater. 2021, 11, 2003701.
Bai, S. L.; Chen, S.; Chen, L. Y.; Zhang, K. W.; Luo, R. X.; Li, D. Q.; Liu, C. C. Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sens. Actuators B Chem. 2012, 174, 51–58.
Liu, D. X.; Meng, Z.; Zhu, Y. F.; Sun, X. F.; Deng, X.; Shi, M. M.; Hao, Q.; Kang, X.; Dai, T. Y.; Zhong, H. X. et al. Gram-level NH3 electrosynthesis via NO x reduction on a Cu activated Co electrode. Angew. Chem., Int. Ed. 2024, 63, e202315238.
Ataka, K. I.; Yotsuyanagi, T.; Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 1996, 100, 10664–10672.
Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.
Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 202209890.
Hao, R.; Tian, L.; Wang, C.; Wang, L.; Liu, Y. P.; Wang, G. C.; Li, W.; Ozin, G. A. Pollution to solution: A universal electrocatalyst for reduction of all NO x -based species to NH3. Chem Catal. 2022, 2, 622–638.
Zhou, J.; Wen, M.; Huang, R.; Wu, Q. S.; Luo, Y. X.; Tian, Y. K.; Wei, G. F.; Fu, Y. Q. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611–2620.
Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.