AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Laser-assisted synthesis of PtPd alloy for efficient ethanol oxidation

Zihang Chen1,§Tong Liu1,§Huijuan Zhang1Beibei Pang1Yuanhua Sun1Longfei Hu1Qiquan Luo2Xiaokang Liu1( )Linlin Cao1( )Tao Yao1
School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

§ Zihang Chen and Tong Liu contributed equally to this work.

Show Author Information

Graphical Abstract

We adopt a convenient physical laser-assisted strategy to synthesize a PtPd alloy catalyst, demonstrating impressive performance in acidic ethanol oxidation reaction attributed to a synergistic interaction between Pt and Pd.

Abstract

The inefficiency of ethanol oxidation reaction (EOR) presents a significant obstacle in harnessing renewable biofuels with high energy density into electricity. Despite efforts, most Pt-based catalysts still suffer from drawbacks such as poor activity and susceptibility to CO poisoning, particularly in acidic conditions. Herein, we employed a physical laser-assisted approach to synthetize a PtPd alloy with a 1:1 atomic ratio. This alloy demonstrates remarkable performance in acidic EOR, boasting a high mass activity of 1.86 A·mgPt−1 and competitive resistance to poisoning. Combining in situ synchrotron radiation infrared spectroscopy with theoretical calculations, we reveal that the synergic interaction between Pt and Pd enhances both the adsorption of OH* intermediate and the dehydrogenation ability of ethanol. This work will prove the feasibility of synthesizing bimetallic alloys by a physical laser-assisted strategy and promote the development of advanced alloy electrocatalysts.

Electronic Supplementary Material

Download File(s)
6662_ESM.pdf (1.8 MB)

References

[1]

Chen, Y. J.; Pei, J. J.; Chen, Z.; Li, A.; Ji, S. F.; Rong, H. P.; Xu, Q.; Wang, T.; Zhang, A. J.; Tang, H. L. et al. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 2022, 22, 7563–7571.

[2]

Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

[3]
Tang, M.; Sun, M. Z.; Chen, W.; Ding, Y. T.; Fan, X. K.; Wu, X. Y.; Fu, X. Z.; Huang, B. L.; Luo, S. P.; Luo, J. L. Atomic diffusion engineered PtSnCu nanoframes with high-index facets boost ethanol oxidation. Adv. Mater., in press, https://doi.org/10.1002/adma.202311731.
[4]

Zhang, Z. Q.; Wu, Q.; Mao, K.; Chen, Y. G.; Du, L. Y.; Bu, Y. F.; Zhuo, O.; Yang, L. J.; Wang, X. Z.; Hu, Z. Efficient ternary synergism of platinum/tin oxide/nitrogen-doped carbon leading to high-performance ethanol oxidation. ACS Catal. 2018, 8, 8477–8483.

[5]

Dai, C. Q.; Yang, Y.; Zhao, Z.; Fisher, A.; Liu, Z. P.; Cheng, D. J. From mixed to three-layer core/shell PtCu nanoparticles: Ligand-induced surface segregation to enhance electrocatalytic activity. Nanoscale 2017, 9, 8945–8951.

[6]

Ding, J. B.; Bu, L. Z.; Guo, S. J.; Zhao, Z. P.; Zhu, E. B.; Huang, Y.; Huang, X. Q. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis. Nano Lett. 2016, 16, 2762–2767.

[7]

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

[8]

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

[9]

Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

[10]

Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

[11]

Velázquez-Palenzuela, A.; Centellas, F.; Garrido, J. A.; Arias, C.; Rodríguez, R. M.; Brillas, E.; Cabot, P. L. Structural properties of unsupported Pt-Ru nanoparticles as anodic catalyst for proton exchange membrane fuel cells. J. Phys. Chem. C 2010, 114, 4399–4407.

[12]

Kua, J.; Goddard, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.

[13]

Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472–7476.

[14]

Forsythe, R. C.; Cox, C. P.; Wilsey, M. K.; Müller, A. M. Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev. 2021, 121, 7568–7637.

[15]

Zhang, J.; Zhu, D. Z.; Yan, J. F.; Wang, C. A. Strong metal–support interactions induced by an ultrafast laser. Nat. Commun. 2021, 12, 6665.

[16]

Wang, B.; Wang, C.; Yu, X. W.; Cao, Y.; Gao, L. F.; Wu, C. P.; Yao, Y. F.; Lin, Z. Q.; Zou, Z. G. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 2022, 1, 138–146.

[17]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotech. 2017, 12, 441–446.

[18]

Zheng, Y. Y.; Qiao, J. H.; Yuan, J. H.; Shen, J. F.; Wang, A. J.; Huang, S. T. Controllable synthesis of PtPd nanocubes on graphene as advanced catalysts for ethanol oxidation. Int. J. Hydrogen Energy 2018, 43, 4902–4911.

[19]

Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based Quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890–5895.

[20]

Chen, L. Y.; Guo, H.; Fujita, T.; Hirata, A.; Zhang, W.; Inoue, A.; Chen, M. W. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 2011, 21, 4364–4370.

[21]

Liu, L. F.; Pippel, E.; Scholz, R.; Gösele, U. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 2009, 9, 4352–4358.

[22]

Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578–7584.

[23]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. P-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[24]

Qiao, M.; Meng, F. Y.; Wu, H.; Wei, Y.; Zeng, X. F.; Wang, J. X. PtCuRu nanoflowers with Ru-Rich edge for efficient fuel-cell electrocatalysis. Small. 2022, 18, 2204720.

[25]

Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.

[26]

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

[27]

Wu, F. X.; Zhang, D. T.; Peng, M. H.; Yu, Z. H.; Wang, X. Y.; Guo, G. S.; Sun, Y. G. Microfluidic synthesis enables dense and uniform loading of surfactant-free PtSn nanocrystals on carbon supports for enhanced ethanol oxidation. Angew. Chem., Int. Ed. 2016, 55, 4952–4956.

[28]

Maturost, S.; Pongpichayakul, N.; Waenkaew, P.; Promsawan, N.; Themsirimongkon, S.; Jakmunee, J.; Saipanya, S. Electrocatalytic activity of bimetallic PtPd on cerium oxide-modified carbon nanotube for oxidation of alcohol and formic acid. J. Electroanal. Chem. 2021, 895, 115445.

[29]

Themsirimongkon, S.; Sarakonsri, T.; Lapanantnoppakhun, S.; Jakmunee, J.; Saipanya, S. Carbon nanotube-supported Pt-alloyed metal anode catalysts for methanol and ethanol oxidation. Int. J. Hydrogen Energy 2019, 44, 30719–30731.

[30]

Nie, M. X.; Xu, Z. Y.; Luo, L.; Wang, Y.; Gan, W.; Yuan, Q. H. One-pot synthesis of ultrafine trimetallic PtPdCu alloy nanoparticles decorated on carbon nanotubes for bifunctional catalysis of ethanol oxidation and oxygen reduction. J. Colloid Interface Sci. 2023, 643, 36–37.

[31]

Yan, W.; Li, G.; Cui, S. S.; Park, G. S.; Oh, R.; Chen, W. X.; Cheng, X. Y.; Zhang, J. M.; Li, W. Z.; Ji, L. F. et al. Ga-modification near-surface composition of Pt-Ga/C catalyst facilitates high-efficiency electrochemical ethanol oxidation through a C2 intermediate. J. Am. Chem. Soc. 2023, 145, 17220–17231.

[32]

Zhang, B. W.; Sheng, T.; Wang, Y. X.; Qu, X. M.; Zhang, J. M.; Zhang, Z. C.; Liao, H. G.; Zhu, F. C.; Dou, S. X.; Jiang, Y. X. et al. Platinum-cobalt bimetallic nanoparticles with Pt skin for electro-oxidation of ethanol. ACS Catal. 2017, 7, 892–895.

[33]

Ye, J. Y.; Jiang, Y. X.; Sheng, T.; Sun, S. G. In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy 2016, 29, 414–427

[34]

Zheng, J. H.; Li, G.; Zhang, J. M.; Cheng, N. Y.; Ji, L. F.; Yang, J.; Zhang, J. L.; Zhang, B. W.; Jiang, Y. X.; Sun, S. G. General strategy for evaluating the d-band center shift and ethanol oxidation reaction pathway towards Pt-based electrocatalysts. Sci. China Chem. 2023, 66, 279–288.

[35]

Wang, H. S.; Abruña, H. D. Adsorbed enolate as the precursor for the C–C bond splitting during ethanol electrooxidation on Pt. J. Am. Chem. Soc. 2023, 145, 6330–6338.

[36]

Tang, L.; Xia, M. H.; Cao, S. Y.; Bo, X.; Zhang, S. B.; Zhang, Y. L.; Liu, X.; Zhang, L. Z.; Yu, L.; Deng, D. H. Operando identification of active sites in Co-Cr oxyhydroxide oxygen evolution electrocatalysts. Nano Energy 2022, 101, 107562.

[37]

Zhou, W. L.; Jiang, J. J.; Cheng, W. R.; Su, H.; Liu, Q. H. In-situ synchrotron radiation infrared spectroscopic identification of reactive intermediates over multiphase electrocatalytic interfaces. Chin. J. Struct. Chem. 2022, 41, 2210004–2210015.

Nano Research
Pages 6032-6037
Cite this article:
Chen Z, Liu T, Zhang H, et al. Laser-assisted synthesis of PtPd alloy for efficient ethanol oxidation. Nano Research, 2024, 17(7): 6032-6037. https://doi.org/10.1007/s12274-024-6662-x
Topics:

496

Views

1

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 29 January 2024
Revised: 06 March 2024
Accepted: 24 March 2024
Published: 07 May 2024
© Tsinghua University Press 2024
Return