Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The construction of stable and efficient materials that emit blue and green light remains a challenge. Among the blue light materials reported, metal-organic framework (MOF) materials are rarely reported as blue phosphors due to their weak luminescence intensity. Based on the construction of CsPbBr3@MOF (CPB@MOF), an innovative idea was proposed to simultaneously enhance the green luminescence of CPB and the blue luminescence of MOF through the interaction between CPB and MOF for the first time. As expected, the blue luminescence from CPB:7%SCN−@0.5%MOF:Eu as well as the green luminescence from 5%CPB:7%SCN−@MOF:Eu was sufficient to construct high-performance light-emitting diode (LED) devices and further excite solar cells to generate stable photoelectric signals. The white LED (WLED) device with excellent color quality (color rendering index (CRI) = 96.2) and correlated color temperature (CCT = 9688 K) can be constructed by using the obtained blue-emitting CPB:7%SCN-@0.5%MOF:Eu, green-emitting 5%CPB:7%SCN−@MOF:Eu, and red-emitting PPB:30%Mn2+. The density functional theory (DFT) theoretical calculation results indicate that the p orbital of Pb plays the major role in the conduction band, and the p orbital of Br plays the major role in the valance band of CPB and CPB:SCN−. While the p orbital of O plays the major role in both the conduction band and valance band of MOF. The heat capacity of CPB and CPB:SCN− separately reaches the Dulong–Petit limit at 200 and 400 K, indicating that the thermal stability of CsPbBr3 increases after SCN− doping.
Park, S. J.; Song, S. H.; Kim, S. S.; Song, J. K. Charge modulation layer and wide-color tunability in a QD-LED with multiemission layers. Small 2021, 17, 2007397.
Zhu, K.; Cheng, Z. K.; Rangan, S.; Cotlet, M.; Du, J. B.; Kasaei, L.; Teat, S. J.; Liu, W.; Chen, Y. F.; Feldman, L. C. et al. A new type of hybrid copper iodide as nontoxic and ultrastable LED emissive layer material. ACS Energy Lett. 2021, 6, 2565–2574.
Joos, J. J.; Van Der Heggen, D.; Martin, L. I. D. J.; Amidani, L.; Smet, P. F.; Barandiarán, Z.; Seijo, L. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence. Nat. Commun. 2020, 11, 3647.
Jiang, M. W.; Hu, Z. H.; Ono, L. K.; Qi, Y. B. CsPbBr x I3− x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Res. 2021, 14, 191–197.
Marin, J. F. G.; Unuchek, D.; Sun, Z.; Cheon, C. Y.; Tagarelli, F.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun. 2022, 13, 4884.
Mao, P.; Liu, C. X.; Li, X. Y.; Liu, M. X.; Chen, Q.; Han, M.; Maier, S. A.; Sargent, E. H.; Zhang, S. Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light Sci. Appl. 2021, 10, 180.
Zhang, C. X.; Wang, S.; Li, X. M.; Yuan, M. J.; Turyanska, L.; Yang, X. Y. Core/shell perovskite nanocrystals: Synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications. Adv. Funct. Mater. 2020, 30, 1910582.
Chen, D. Z.; Ko, P. K.; Li, C. H. A.; Zou, B. S.; Geng, P.; Guo, L.; Halpert, J. E. Amino acid-passivated pure red CsPbI3 quantum dot LEDs. ACS Energy Lett. 2023, 8, 410–416.
Xu, W.; Cai, Z. X.; Li, F. M.; Dong, J.; Wang, Y. R.; Jiang, Y. Q.; Chen, X. Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Res. 2017, 10, 2692–2698.
Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.
Lee, Y. H.; Shabbir, I.; Yoo, K. H.; Kim, T. W. Significant enhancement of output performance of piezoelectric nanogenerators based on CsPbBr3 quantum dots-NOA63 nanocomposites. Nano Energy 2021, 85, 105975.
Feng, J. Y.; Han, X. P.; Huang, H. T.; Meng, Q. X.; Zhu, Z.; Yu, T.; Li, Z. S.; Zou, Z. G. Curing the fundamental issue of impurity phases in two-step solution-processed CsPbBr3 perovskite films. Sci. Bull. 2020, 65, 726–737.
Kim, H.; Bae, S. R.; Lee, T. H.; Lee, H.; Kang, H.; Park, S.; Jang, H. W.; Kim, S. Y. Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping. Adv. Funct. Mater. 2021, 31, 2102770.
Iaru, C. M.; Brodu, A.; Van Hoof, N. J. J.; Ter Huurne, S. E. T.; Buhot, J.; Montanarella, F.; Buhbut, S.; Christianen, P. C. M.; Vanmaekelbergh, D.; De Mello Donega, C. et al. Fröhlich interaction dominated by a single phonon mode in CsPbBr3. Nat. Commun. 2021, 12, 5844.
Yin, W. X.; Li, M. K.; Dong, W.; Luo, Z.; Li, Y. X.; Qian, J. Y.; Zhang, J. Q.; Zhang, W.; Zhang, Y.; Kershaw, S. V. et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 2021, 6, 477–484.
Dutta, S. K.; Bera, S.; Behera, R. K.; Hudait, B.; Pradhan, N. Cs-lattice extension and expansion for inducing secondary growth of CsPbBr3 perovskite nanocrystals. ACS Nano 2021, 15, 16183–16193.
Mehetor, S. K.; Ghosh, H.; Pradhan, N. Blue-emitting CsPbBr3 perovskite quantum rods and their wide-area 2D self-assembly. ACS Energy Lett. 2019, 4, 1437–1442.
Mondal, S.; Paul, T.; Maiti, S.; Das, B. K.; Chattopadhyay, K. K. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 2020, 74, 104870.
Zhang, Q. G.; Wang, B.; Zheng, W. L.; Kong, L.; Wan, Q.; Zhang, C. Y.; Li, Z. C.; Cao, X. Y.; Liu, M. M.; Li, L. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat. Commun. 2020, 11, 31.
Antrack, T.; Kroll, M.; Sudzius, M.; Cho, C.; Imbrasas, P.; Albaladejo-Siguan, M.; Benduhn, J.; Merten, L.; Hinderhofer, A.; Schreiber, F. et al. Optical properties of perovskite-organic multiple quantum wells. Adv. Sci. 2022, 9, 2200379.
Shamsi, J.; Kubicki, D.; Anaya, M.; Liu, Y.; Ji, K. Y.; Frohna, K.; Grey, C. P.; Friend, R. H.; Stranks, S. D. Stable hexylphosphonate-capped blue-emitting quantum-confined CsPbBr3 nanoplatelets. ACS Energy Lett. 2020, 5, 1900–1907.
Liu, K. K.; Liu, Q.; Yang, D. W.; Liang, Y. C.; Sui, L. Z.; Wei, J. Y.; Xue, G. W.; Zhao, W. B.; Wu, X. Y.; Dong, L. et al. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light Sci. Appl. 2020, 9, 44.
Liu, M. M.; Wan, Q.; Wang, H. M.; Carulli, F.; Sun, X. C.; Zheng, W. L.; Kong, L.; Zhang, Q.; Zhang, C. Y.; Zhang, Q. G. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photon. 2021, 15, 379–385.
Zhang, Y.; Yang, H. J.; Chen, M.; Padture, N. P.; Chen, O.; Zhou, Y. Y. Fusing nanowires into thin films: Fabrication of graded-heterojunction perovskite solar cells with enhanced performance. Adv. Energy Mater. 2019, 9, 1900243.
Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 2018, 12, 681–687.
Song, J. Z.; Li, J. H.; Xu, L. M.; Li, J. H.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 2018, 30, 1800764.
Jiang, M. W.; Hu, Z. H.; Liu, Z. H.; Wu, Z. F.; Ono, L. K.; Qi, Y. B. Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 2019, 4, 2731–2738.
Zhou, W. K.; Chen, S. L.; Zhao, Y. C.; Li, Q.; Zhao, Y.; Fu, R.; Yu, D. P.; Gao, P.; Zhao, Q. Constructing CsPbBr3 cluster passivated-triple cation perovskite for highly efficient and operationally stable solar cells. Adv. Funct. Mater. 2019, 29, 1809180.
Kobosko, S. M.; DuBose, J. T.; Kamat, P. V. Perovskite photocatalysis. methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals. ACS Energy Lett. 2020, 5, 221–223.
Kumawat, N. K.; Liu, X. K.; Kabra, D.; Gao, F. Blue perovskite light-emitting diodes: Progress, challenges and future directions. Nanoscale 2019, 11, 2109–2120.
Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y. C.; Wang, M. C.; Nedelcu, G.; Kim, Y.; Lin, S. C.; Santos, E. J. G. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 2016, 10, 9720–9729.
Schanze, K. S.; Kamat, P. V.; Yang, P. D.; Bisquert, J. Progress in perovskite photocatalysis. ACS Energy Lett. 2020, 5, 2602–2604.
Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.
Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.
Xu, Q.; Wang, R.; Jia, Y. L.; He, X. L.; Deng, Y. H.; Yu, F. X.; Zhang, Y.; Ma, X. J.; Chen, P.; Zhang, Y. et al. Highly efficient quasi-two dimensional perovskite light-emitting diodes by phase tuning. Org. Electron. 2021, 98, 106295.
Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.
Chen, Y. M.; Lei, Y. S.; Li, Y. H.; Yu, Y. G.; Cai, J. Z.; Chiu, M. H.; Rao, R.; Gu, Y.; Wang, C. F.; Choi, W. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577, 209–215.
Qin, C. J.; Matsushima, T.; Potscavage, W. J.; Sandanayaka, A. S. D.; Leyden, M. R.; Bencheikh, F.; Goushi, K.; Mathevet, F.; Heinrich, B.; Yumoto, G. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photon. 2020, 14, 70–75.
Hu, M. L.; Masoomi, M. Y.; Morsali, A. Template strategies with MOFs. Coord. Chem. Rev. 2019, 387, 415–435.
Guillou, O.; Daiguebonne, C.; Calvez, G.; Bernot, K. A long journey in lanthanide chemistry: From fundamental crystallogenesis studies to commercial anticounterfeiting taggants. Acc. Chem. Res. 2016, 49, 844–856.
Zheng, X. H.; Wang, L.; Pei, Q.; He, S. S.; Liu, S.; Xie, Z. G. Metal-organic framework@porous organic polymer nanocomposite for photodynamic therapy. Chem. Mater. 2017, 29, 2374–2381.
Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.
Nie, W. Y.; Tsai, H. Perovskite nanocrystals stabilized in metal-organic frameworks for light emission devices. J. Mater. Chem. A 2022, 10, 19518–19533.
Shankar, H.; Yu, W. W.; Kang, Y.; Kar, P. Significant boost of the stability and PLQY of CsPbBr3 NCs by Cu-BTC MOF. Sci. Rep. 2022, 12, 7848.