AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterobimetallic [NiCo] integration in a hydrogenase mimic for boosting light-driven hydrogen evolution in CaTiO3

Kang Li§Juanji Hong§Ningning Song( )Zhanjun Guo( )Minmin Liang( )
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China

§ Kang Li and Juanji Hong contributed equally to this work.

Show Author Information

Graphical Abstract

The integration of heterobimetallic [NiCo]-nanozyme with CaTiO3 was able to substantively increase the photocatalytic hydrogen evolution by 60-fold in a manner similar to [NiFe]-hydrogenase.

Abstract

Light-drive hydrogen production using titanium-based perovskite is one sustainable way to reduce current reliance on fossil fuels, but its wide applications are still limited by high electron−hole recombination and sluggish surface reaction. Thus, the developments for low-cost and highly efficient co-catalysts remain urgent. Inspired by natural [NiFe]-hydrogenase active center structure, a hydrogenase-mimic, NiCo2S4 nanozyme was synthesized, and subsequently decorated onto the CaTiO3 to catalyze the hydrogen evolution reaction (HER). Among the following test, CaTiO3 with a 15% loading of NiCo2S4 nanozyme exhibited the highest HER rate of 307.76 μmol·g–1·h–1, which is 60 times higher than that of the CaTiO3 alone. The results reveal that NiCo2S4 not only significantly increased the charge separation efficiency of the photogenerated carriers, but also substantively lowered the HER activation energy. Mechanism studies show that NiCo2S4 readily splits H2O by forming the Ni(OH)-Co intermediate and only Ni in the bimetallic center alters the oxidation state during the HER process in a manner analogous to the [NiFe]-hydrogenase. In contrast to the often-expensive synthetic catalysts that rely on rare elements such as ruthenium and platinum, this study shows a promising way to develop the nature-inspired cocatalysts to enhance the photocatalysts’ HER performance.

Electronic Supplementary Material

Download File(s)
6666_ESM.pdf (2 MB)

References

[1]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[2]

Yang, H. C.; Cao, R. Y.; Sun, P. X.; Deng, X. L.; Zhang, S. W.; Xu, X. J. Highly dispersed and noble metal-free MP X (M = Ni, Co, Fe) coupled with g-C3N4 nanosheets as 0D/2D photocatalysts for hydrogen evolution. Appl. Surf. Sci. 2018, 458, 893–902.

[3]

Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

[4]

Chen, K. H.; Xiao, J. D.; Hisatomi, T.; Domen, K. Transition-metal (oxy)nitride photocatalysts for water splitting. Chem. Sci. 2023, 14, 9248–9257.

[5]

Yang, Y.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Zeng, G. M.; Huang, D. L.; Zhang, C.; Song, B.; Xue, W. J.; Li, X. P. et al. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem. Eng. J. 2021, 405, 126547.

[6]

Ou, H. H.; Li, G. S.; Ren, W.; Pan, B. J.; Luo, G. H.; Hu, Z. F.; Wang, D. S.; Li, Y. D. Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO2 photoreduction to C2H6. J. Am. Chem. Soc. 2022, 144, 22075–22082.

[7]

Mengting, Z.; Kurniawan, T. A.; Duan, L.; Song, Y. H.; Hermanowicz, S. W.; Othman, M. H. D. Advances in BiO X-based ternary photocatalysts for water technology and energy storage applications: Research trends, challenges, solutions, and ways forward. Rev. Environ. Sci. Bio/Technol. 2022, 21, 331–370.

[8]

Zhu, S. C.; Xiao, F. X. Transition metal chalcogenides quantum dots: Emerging building blocks toward solar-to-hydrogen conversion. ACS Catal. 2023, 13, 7269–7309.

[9]

Passi, M.; Pal, B. A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technol. 2021, 388, 274–304.

[10]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0-Co δ + interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[11]

Gong, X. J.; Chong, B.; Xia, M. Y.; Li, H.; Ou, H. H.; Yang, G. D. Fluorinated phosphonium ionic liquid boosts the N2-adsorbing ability of TiO2 for efficient photocatalytic NH3 synthesis. Catal. Sci. Technol. 2024, 14, 343–352.

[12]

Kumar, A.; Schuerings, C.; Kumar, S.; Kumar, A.; Krishnan, V. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J. Nanotechnol. 2018, 9, 671–685.

[13]

Yan, Y. X.; Yang, H.; Yi, Z.; Li, R. S.; Xian, T. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation. Solid State Sci. 2020, 100, 106102.

[14]

Yan, X. Q.; Xia, M. Y.; Liu, H. X.; Zhang, B.; Chang, C. R.; Wang, L. Z.; Yang, G. D. An electron−hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nat. Commun. 2023, 14, 1741.

[15]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[16]

Wang, J. Y.; Ma, J. P.; Zhang, Q. L.; Chen, Y.; Hong, L.; Wang, B.; Chen, J. Z.; Jing, H. W. New heterojunctions of CN/TiO2 with different band structure as highly efficient catalysts for artificial photosynthesis. Appl. Catal. B: Environ. 2021, 285, 119781.

[17]

Xiao, B.; Shen, C. C.; Luo, Z. G.; Li, D. Q.; Kuang, X. Y.; Wang, D. K.; Zi, B. Y.; Yan, R. H.; Lv, T. P.; Zhou, T. et al. Cu surface doped TiO2: Constructing Cu single-atoms active sites and broadening the photo-response range for efficient photocatalytic hydrogen production. Chem. Eng. J. 2023, 468, 143650.

[18]

Gao, R. C.; Xiong, L. Y.; Huang, L.; Chen, W.; Li, X. Y.; Liu, X. Q.; Mao, L. Q. A new structure of Pt NF@Ni(OH)2/CdS heterojunction: Preparation, characterization and properties in photocatalytic hydrogen generation. Chem. Eng. J. 2022, 430, 132726.

[19]

Sun, X. H.; Sun, L. A.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

[20]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[21]

Daskalaki, V. M.; Antoniadou, M.; Li Puma, G.; Kondarides, D. I.; Lianos, P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ. Sci. Technol. 2010, 44, 7200–7205.

[22]

Ma, X. H.; Liu, Y. N.; Wang, Y. P.; Jin, Z. L. Amorphous CoS x growth on CaTiO3 nanocubes formed s-scheme heterojunction for photocatalytic hydrogen production. Energy Fuels 2021, 35, 6231–6239.

[23]

Qumar, U.; Hassan, J. Z.; Bhatti, R. A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs adsorption by metal oxide nanoparticles. J. Mater. Sci. Technol. 2022, 131, 122–166.

[24]

Ogata, H.; Lubitz, W.; Higuchi, Y. Structure and function of [NiFe] hydrogenases. J. Biochem. 2016, 160, 251–258.

[25]

Peters, J. W.; Schut, G. J.; Boyd, E. S.; Mulder, D. W.; Shepard, E. M.; Broderick, J. B.; King, P. W.; Adams, M. W. W. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta - Mol. Cell Res. 2015, 1853, 1350–1369.

[26]

Stripp, S. T.; Duffus, B. R.; Fourmond, V.; Léger, C.; Leimkühler, S.; Hirota, S.; Hu, Y. L.; Jasniewski, A.; Ogata, H.; Ribbe, M. W. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase. Chem. Rev. 2022, 122, 11900–11973.

[27]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[28]

Hong, J. J.; Guo, Z. J.; Duan, D. H.; Zhang, Y.; Chen, X.; Li, Y. J.; Tu, Z.; Feng, L.; Chen, L.; Yan, X. Y. et al. Highly sensitive nanozyme strip: An effective tool for forensic material evidence identification. Nano Res. 2024, 17, 1785–1791.

[29]

Song, N. N.; Yu, Y.; Zhang, Y. N.; Wang, Z. D.; Guo, Z. J.; Zhang, J. L.; Zhang, C. B.; Liang, M. M. Bioinspired hierarchical self-assembled nanozyme for efficient antibacterial treatment. Adv. Mater. 2024, 36, 2210455.

[30]

Yu, Y.; Zhang, Y. N.; Wang, Y.; Chen, W. X.; Guo, Z. J.; Song, N. N.; Liang, M. M. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Res. 2023, 16, 10763–10769.

[31]

Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C. 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett. 2019, 4, 1687–1709

[32]

Han, C.; Liu, J. J.; Yang, W. J.; Wu, Q. Q.; Yang, H.; Xue, X. X. Enhancement of photocatalytic activity of CaTiO3 through HNO3 acidification. J. Photochem. Photobiol. A: Chem. 2016, 322–323, 1–9

[33]

Cui, B.; Lin, H.; Liu, Y. Z.; Li, J. B.; Sun, P.; Zhao, X. C.; Liu, C. J. Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets. J. Phys. Chem. C 2009, 113, 14083–14087.

[34]

Liu, J.; Zhang, J. N.; Wang, D.; Li, D. Y.; Ke, J.; Wang, S. B.; Liu, S. M.; Xiao, H. N.; Wang, R. J. Highly dispersed NiCo2O4 nanodots decorated three-dimensional g-C3N4 for enhanced photocatalytic H2 generation. ACS Sustain. Chem. Eng. 2019, 7, 12428–12438.

[35]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

[36]

Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 2000, 153, 74–81.

[37]

Yin, X. L.; Li, L. L.; Jiang, W. J.; Zhang, Y.; Zhang, X.; Wan, L. J.; Hu, J. S. MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 15258–15266.

[38]

Song, N. N.; Guo, Z. J.; Wang, S.; Li, Y. L.; Liu, Y. P.; Zou, M. S.; Liang, M. M. A functional hydrogenase mimic that catalyzes robust H2 evolution spontaneously in aqueous environment. Nano Res. 2024, 17, 3942–3949.

[39]

You, Q. L.; Zhang, Q. X.; Gu, M. B.; Du, R. J.; Chen, P.; Huang, J.; Wang, Y. J.; Deng, S. B.; Yu, G. Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac. Chem. Eng. J. 2022, 431, 133927.

[40]

Kaur-Ghumaan, S.; Stein, M. [NiFe] hydrogenases: How close do structural and functional mimics approach the active site? Dalton Trans. 2014, 43, 9392–9405

Nano Research
Pages 6888-6894
Cite this article:
Li K, Hong J, Song N, et al. Heterobimetallic [NiCo] integration in a hydrogenase mimic for boosting light-driven hydrogen evolution in CaTiO3. Nano Research, 2024, 17(8): 6888-6894. https://doi.org/10.1007/s12274-024-6666-6
Topics:

407

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 March 2024
Revised: 26 March 2024
Accepted: 27 March 2024
Published: 02 May 2024
© Tsinghua University Press 2024
Return