AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting the zinc storage performance of vanadium dioxide by integrated morphology engineering and carbon nanotube conductive networks

Lijie Ma1Xiaolin Wang1Xiang Chen2( )Jianbin Gao1Yiwen Wang1Yuehai Song1Yaran Zhao3( )Shizhe Gao1Lin Li4( )Jianchao Sun1( )
School of Environment and Material Engineering, Yantai University, Yantai 264005, China
College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Show Author Information

Graphical Abstract

In this paper, a flower-like VO2/carbon nanotubes (CNTs) composite is obtained by a facile hydrothermal method. The unique flower-like morphology shortens the ion transport length and facilitates electrolyte infiltration.

Abstract

Vanadium dioxide (VO2) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries. Nevertheless, the intrinsic low electronic conductivity of VO2 results in an unsatisfactory electrochemical performance. Herein, a flower-like VO2/carbon nanotubes (CNTs) composite was obtained by a facile hydrothermal method. The unique flower-like morphology shortens the ion transport length and facilitates electrolyte infiltration. Meanwhile, the CNT conductive networks is in favor of fast electron transfer. A highly reversible zinc storage mechanism was revealed by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy. As a result, the VO2/CNTs cathode exhibits a high reversible capacity (410 mAh·g−1), superior rate performance (305 mAh·g−1 at 5 A·g−1), and excellent cycling stability (a reversible capacity of 221 mAh·g−1 was maintained even after 2000 cycles). This work provides a guide for the design of high-performance cathode materials for aqueous zinc metal batteries.

Electronic Supplementary Material

Download File(s)
6668_ESM.pdf (1.8 MB)

References

[1]

Jiang, M. X.; Hu, Y. J.; Mao, B. G.; Wang, Y. X.; Yang, Z.; Meng, T.; Wang, X.; Cao, M. H. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nat. Commun. 2022, 13, 5588.

[2]
Chen, Z. B.; Wu, Q.; Han, X. R.; Wang, C.; Chen, J. L.; Hu, T.; He, Q.; Zhu, X. Y.; Yuan, D.; Chen, J. Y. et al. Converting commercial Zn foils into single (002)-textured Zn with millimeter-sized grains for highly reversible aqueous zinc batteries. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/ange.202401507.
[3]

Li, R. T.; Du, Y. X.; Li, Y. H.; He, Z. X.; Dai, L.; Wang, L.; Wu, X. W.; Zhang, J. J.; Yi, J. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2023, 8, 457–476.

[4]

Li, T. J.; Sun, J. C.; Gao, S. Z.; Xiao, B.; Cheng, J. B.; Zhou, Y. L.; Sun, X. Q.; Jiang, F. Y.; Yan, Z. H.; Xiong, S. L. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 2021, 11, 2003699.

[5]
Zhou, X. Z.; Wen, B.; Cai, Y. C.; Chen, X. M.; Li, L.; Zhao, Q.; Chou, S. J.; Li, F. J. interfacial engineering for oriented crystal growth toward dendrite-free Zn anode for aqueous zinc metal battery. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202402342.
[6]

Song, Y.; Ruan, P. C.; Mao, C. W.; Chang, Y. X.; Wang, L.; Dai, L.; Zhou, P.; Lu, B. G.; Zhou, J.; He, Z. X. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022, 14, 218.

[7]

Wang, T. T.; Wang, P. J.; Pan, L.; He, Z. X.; Dai, L.; Wang, L.; Liu, S. D.; Jun, S. C.; Lu, B. G.; Liang, S. Q. et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 2023, 13, 2203523.

[8]

Meng, T.; Sun, P. P.; Yang, F.; Zhu, J.; Mao, B. G.; Zheng, L. R.; Cao, M. H. Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2214089119.

[9]

Lv, T. T.; Peng, Y.; Zhang, G. X.; Jiang, S.; Yang, Z. L.; Yang, S. Y.; Pang, H. How about vanadium-based compounds as cathode materials for aqueous zinc ion batteries? Adv. Sci. 2023, 10, 2206907.

[10]

Li, Y.; Peng, X. Y.; Li, X.; Duan, H.; Xie, S. Y.; Dong, L. B.; Kang, F. Y. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 2023, 35, 2300019.

[11]

Qu, G.; Guo, K.; Chen, W. J.; Du, Y.; Wang, Y.; Tian, B. B.; Zhang, J. N. Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 2023, 6, e12502.

[12]

Du, M.; Liu, C. F.; Zhang, F.; Dong, W. T.; Zhang, X. F.; Sang, Y. H.; Wang, J. J.; Guo, Y. G.; Liu, H.; Wang, S. H. Tunable layered (Na,Mn)V8O20· nH2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 2020, 7, 2000083.

[13]

Zuo, Y.; Meng, T. F.; Tian, H.; Ling, L.; Zhang, H. L.; Zhang, H.; Sun, X. H.; Cai, S. Enhanced H+ storage of a MnO2 cathode via a MnO2 nanolayer interphase transformed from manganese phosphate. ACS Nano 2023, 17, 5600–5608.

[14]

Zhang, N.; Wang, J. C.; Guo, Y. F.; Wang, P. F.; Zhu, Y. R.; Yi, T. F. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord. Chem. Rev. 2023, 479, 215009.

[15]

He, Q.; Chen, Z. B.; Niu, X. Y.; Han, X. R.; Kang, T.; Chen, J. Y.; Ma, Y. W.; Zhao, J. Amorphous vanadium oxides for electrochemical energy storage. Nano Res. 2023, 16, 9195–9213.

[16]

Lv, T. T.; Luo, X.; Yuan, G. Q.; Yang, S. Y.; Pang, H. Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 428, 131211.

[17]

Gu, X.; Wang, J. T.; Zhao, X. B.; Jin, X.; Jiang, Y. Z.; Dai, P. C.; Wang, N. N.; Bai, Z. C.; Zhang, M. D.; Wu, M. B. Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries. J. Energy Chem. 2023, 85, 30–38.

[18]

Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081

[19]

Chen, H. Z.; Qin, H. G.; Chen, L. L.; Wu, J.; Yang, Z. H. V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability. J. Alloys Compd. 2020, 842, 155912

[20]

Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

[21]

Cui, F. H.; Zhao, J.; Zhang, D. X.; Fang, Y. Z.; Hu, F.; Zhu, K. VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chem. Eng. J. 2020, 390, 124118.

[22]

Liu, Y. Y.; Lv, T. T.; Wang, H.; Guo, X. T.; Liu, C. S.; Pang, H. Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chem. Eng. J. 2021, 417, 128408.

[23]

Ding, J. W.; Zheng, H. Y.; Gao, H. G.; Liu, Q. N.; Hu, Z.; Han, L. F.; Wang, S. W.; Wu, S. D.; Fang, S. M.; Chou, S. L. In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy Mater. 2021, 11, 2100973

[24]

Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224

[25]

Xie, L.; Xiao, W. H.; Shi, X. Y.; Hong, J. Z.; Cai, J. J.; Zhang, K. L.; Shao, L. Y.; Sun, Z. P. VO2·0.26H2O nanobelts@reduced graphene oxides as cathode materials for high-performance aqueous zinc ion batteries. Chem. Commun. 2022, 58, 13807–13810

[26]

Fan, X. K.; Wen, X. Y.; Tang, Y.; Zhou, W.; Xiang, K. X.; Chen, H. β-VO2/carbon nanotubes core-shelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries. Electrochim. Acta 2021, 400, 139425

[27]

Wang, C. Y.; Wang, M. Q.; Liu, L.; Huang, Y. D. 3D porous sponge-inspired electrode for high-energy and high-power zinc-ion batteries. ACS Appl. Energy Mater. 2021, 4, 1833–1839

[28]

Lane, M. K. M.; Rudel, H. E.; Wilson, J. A.; Erythropel, H. C.; Backhaus, A.; Gilcher, E. B.; Ishii, M.; Jean, C. F.; Lin, F.; Muellers, T. D. et al. Green chemistry as just chemistry. Nat. Sustain. 2023, 6, 502–512.

[29]

Song, D. M.; Yu, J. D.; Wang, M. M.; Tan, Q. Y.; Liu, K.; Li, J. H. Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy. Energy Storage Mater. 2023, 61, 102870.

[30]

Xue, M. D.; Bai, J.; Wu, M. C.; He, Q. Q.; Zhang, Q. C.; Chen, L. Y. Carbon-assisted anodes and cathodes for zinc ion batteries: From basic science to specific applications, opportunities and challenges. Energy Storage Mater. 2023, 62, 102940.

[31]

Gao, S. Z.; Ju, P.; Liu, Z. Q.; Zhai, L.; Liu, W. B.; Zhang, X. Y.; Zhou, Y. L.; Dong, C. F.; Jiang, F. Y.; Sun, J. C. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J. Energy Chem. 2022, 69, 356–362.

[32]

Zhu, K. Y.; Wu, T.; Sun, S. C.; Van Den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.

[33]

Li, S. L.; Wei, X. J.; Chen, H. P.; Lai, G. Y.; Wang, X. P.; Zhang, S. J.; Wu, S. X.; Tang, W. T.; Lin, Z. A mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 22392–22398.

[34]

Yuan, X.; Nie, Y. G.; Zou, T.; Deng, C. L.; Zhang, Y. P.; Wang, Z. Y.; Wang, J. Y.; Zhang, C. L.; Ye, E. J. Polyaniline-intercalated vanadium dioxide nanoflakes for high-performance aqueous zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 13692–13701.

[35]

Wang, Y. X.; Wang, X.; Zhao, B.; Ren, Z. X.; Yao, Z. S.; Wei, W.; Wang, J.; Qin, J. W.; Xie, J.; Cao, M. H. Molecular-level identification of organic species of ether-based solid-electrolyte interphase in sodium-ion batteries. Nano Energy 2024, 120, 109163.

[36]
Li, Z. J.; Chen, X.; Zhang, R.; Shen, T. Y.; Sun, J. C.; Hu, Z. C.; Li, L.; Yang, L. L.; Yu, H. Y. Advanced cellulose-based materials toward stabilizing zinc anodes. Sci. China Chem., in press, https://doi.org/10.1007/s11426-023-1918-0.
[37]

Li, X.; Li, Y.; Zhao, X.; Kang, F. Y.; Dong, L. B. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 2022, 53, 505–513.

Nano Research
Pages 7136-7143
Cite this article:
Ma L, Wang X, Chen X, et al. Boosting the zinc storage performance of vanadium dioxide by integrated morphology engineering and carbon nanotube conductive networks. Nano Research, 2024, 17(8): 7136-7143. https://doi.org/10.1007/s12274-024-6668-4
Topics:

538

Views

5

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 26 February 2024
Revised: 20 March 2024
Accepted: 28 March 2024
Published: 11 May 2024
© Tsinghua University Press 2024
Return