Vanadium dioxide (VO2) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries. Nevertheless, the intrinsic low electronic conductivity of VO2 results in an unsatisfactory electrochemical performance. Herein, a flower-like VO2/carbon nanotubes (CNTs) composite was obtained by a facile hydrothermal method. The unique flower-like morphology shortens the ion transport length and facilitates electrolyte infiltration. Meanwhile, the CNT conductive networks is in favor of fast electron transfer. A highly reversible zinc storage mechanism was revealed by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy. As a result, the VO2/CNTs cathode exhibits a high reversible capacity (410 mAh·g−1), superior rate performance (305 mAh·g−1 at 5 A·g−1), and excellent cycling stability (a reversible capacity of 221 mAh·g−1 was maintained even after 2000 cycles). This work provides a guide for the design of high-performance cathode materials for aqueous zinc metal batteries.
Jiang, M. X.; Hu, Y. J.; Mao, B. G.; Wang, Y. X.; Yang, Z.; Meng, T.; Wang, X.; Cao, M. H. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nat. Commun. 2022, 13, 5588.
Li, R. T.; Du, Y. X.; Li, Y. H.; He, Z. X.; Dai, L.; Wang, L.; Wu, X. W.; Zhang, J. J.; Yi, J. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2023, 8, 457–476.
Li, T. J.; Sun, J. C.; Gao, S. Z.; Xiao, B.; Cheng, J. B.; Zhou, Y. L.; Sun, X. Q.; Jiang, F. Y.; Yan, Z. H.; Xiong, S. L. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 2021, 11, 2003699.
Song, Y.; Ruan, P. C.; Mao, C. W.; Chang, Y. X.; Wang, L.; Dai, L.; Zhou, P.; Lu, B. G.; Zhou, J.; He, Z. X. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022, 14, 218.
Wang, T. T.; Wang, P. J.; Pan, L.; He, Z. X.; Dai, L.; Wang, L.; Liu, S. D.; Jun, S. C.; Lu, B. G.; Liang, S. Q. et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 2023, 13, 2203523.
Meng, T.; Sun, P. P.; Yang, F.; Zhu, J.; Mao, B. G.; Zheng, L. R.; Cao, M. H. Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2214089119.
Lv, T. T.; Peng, Y.; Zhang, G. X.; Jiang, S.; Yang, Z. L.; Yang, S. Y.; Pang, H. How about vanadium-based compounds as cathode materials for aqueous zinc ion batteries? Adv. Sci. 2023, 10, 2206907.
Li, Y.; Peng, X. Y.; Li, X.; Duan, H.; Xie, S. Y.; Dong, L. B.; Kang, F. Y. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 2023, 35, 2300019.
Qu, G.; Guo, K.; Chen, W. J.; Du, Y.; Wang, Y.; Tian, B. B.; Zhang, J. N. Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 2023, 6, e12502.
Du, M.; Liu, C. F.; Zhang, F.; Dong, W. T.; Zhang, X. F.; Sang, Y. H.; Wang, J. J.; Guo, Y. G.; Liu, H.; Wang, S. H. Tunable layered (Na,Mn)V8O20· nH2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 2020, 7, 2000083.
Zuo, Y.; Meng, T. F.; Tian, H.; Ling, L.; Zhang, H. L.; Zhang, H.; Sun, X. H.; Cai, S. Enhanced H+ storage of a MnO2 cathode via a MnO2 nanolayer interphase transformed from manganese phosphate. ACS Nano 2023, 17, 5600–5608.
Zhang, N.; Wang, J. C.; Guo, Y. F.; Wang, P. F.; Zhu, Y. R.; Yi, T. F. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord. Chem. Rev. 2023, 479, 215009.
He, Q.; Chen, Z. B.; Niu, X. Y.; Han, X. R.; Kang, T.; Chen, J. Y.; Ma, Y. W.; Zhao, J. Amorphous vanadium oxides for electrochemical energy storage. Nano Res. 2023, 16, 9195–9213.
Lv, T. T.; Luo, X.; Yuan, G. Q.; Yang, S. Y.; Pang, H. Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 428, 131211.
Gu, X.; Wang, J. T.; Zhao, X. B.; Jin, X.; Jiang, Y. Z.; Dai, P. C.; Wang, N. N.; Bai, Z. C.; Zhang, M. D.; Wu, M. B. Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries. J. Energy Chem. 2023, 85, 30–38.
Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081
Chen, H. Z.; Qin, H. G.; Chen, L. L.; Wu, J.; Yang, Z. H. V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability. J. Alloys Compd. 2020, 842, 155912
Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.
Cui, F. H.; Zhao, J.; Zhang, D. X.; Fang, Y. Z.; Hu, F.; Zhu, K. VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chem. Eng. J. 2020, 390, 124118.
Liu, Y. Y.; Lv, T. T.; Wang, H.; Guo, X. T.; Liu, C. S.; Pang, H. Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chem. Eng. J. 2021, 417, 128408.
Ding, J. W.; Zheng, H. Y.; Gao, H. G.; Liu, Q. N.; Hu, Z.; Han, L. F.; Wang, S. W.; Wu, S. D.; Fang, S. M.; Chou, S. L. In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy Mater. 2021, 11, 2100973
Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224
Xie, L.; Xiao, W. H.; Shi, X. Y.; Hong, J. Z.; Cai, J. J.; Zhang, K. L.; Shao, L. Y.; Sun, Z. P. VO2·0.26H2O nanobelts@reduced graphene oxides as cathode materials for high-performance aqueous zinc ion batteries. Chem. Commun. 2022, 58, 13807–13810
Fan, X. K.; Wen, X. Y.; Tang, Y.; Zhou, W.; Xiang, K. X.; Chen, H. β-VO2/carbon nanotubes core-shelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries. Electrochim. Acta 2021, 400, 139425
Wang, C. Y.; Wang, M. Q.; Liu, L.; Huang, Y. D. 3D porous sponge-inspired electrode for high-energy and high-power zinc-ion batteries. ACS Appl. Energy Mater. 2021, 4, 1833–1839
Lane, M. K. M.; Rudel, H. E.; Wilson, J. A.; Erythropel, H. C.; Backhaus, A.; Gilcher, E. B.; Ishii, M.; Jean, C. F.; Lin, F.; Muellers, T. D. et al. Green chemistry as just chemistry. Nat. Sustain. 2023, 6, 502–512.
Song, D. M.; Yu, J. D.; Wang, M. M.; Tan, Q. Y.; Liu, K.; Li, J. H. Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy. Energy Storage Mater. 2023, 61, 102870.
Xue, M. D.; Bai, J.; Wu, M. C.; He, Q. Q.; Zhang, Q. C.; Chen, L. Y. Carbon-assisted anodes and cathodes for zinc ion batteries: From basic science to specific applications, opportunities and challenges. Energy Storage Mater. 2023, 62, 102940.
Gao, S. Z.; Ju, P.; Liu, Z. Q.; Zhai, L.; Liu, W. B.; Zhang, X. Y.; Zhou, Y. L.; Dong, C. F.; Jiang, F. Y.; Sun, J. C. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J. Energy Chem. 2022, 69, 356–362.
Zhu, K. Y.; Wu, T.; Sun, S. C.; Van Den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.
Li, S. L.; Wei, X. J.; Chen, H. P.; Lai, G. Y.; Wang, X. P.; Zhang, S. J.; Wu, S. X.; Tang, W. T.; Lin, Z. A mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 22392–22398.
Yuan, X.; Nie, Y. G.; Zou, T.; Deng, C. L.; Zhang, Y. P.; Wang, Z. Y.; Wang, J. Y.; Zhang, C. L.; Ye, E. J. Polyaniline-intercalated vanadium dioxide nanoflakes for high-performance aqueous zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 13692–13701.
Wang, Y. X.; Wang, X.; Zhao, B.; Ren, Z. X.; Yao, Z. S.; Wei, W.; Wang, J.; Qin, J. W.; Xie, J.; Cao, M. H. Molecular-level identification of organic species of ether-based solid-electrolyte interphase in sodium-ion batteries. Nano Energy 2024, 120, 109163.
Li, X.; Li, Y.; Zhao, X.; Kang, F. Y.; Dong, L. B. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 2022, 53, 505–513.