Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Vanadium dioxide (VO2) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries. Nevertheless, the intrinsic low electronic conductivity of VO2 results in an unsatisfactory electrochemical performance. Herein, a flower-like VO2/carbon nanotubes (CNTs) composite was obtained by a facile hydrothermal method. The unique flower-like morphology shortens the ion transport length and facilitates electrolyte infiltration. Meanwhile, the CNT conductive networks is in favor of fast electron transfer. A highly reversible zinc storage mechanism was revealed by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy. As a result, the VO2/CNTs cathode exhibits a high reversible capacity (410 mAh·g−1), superior rate performance (305 mAh·g−1 at 5 A·g−1), and excellent cycling stability (a reversible capacity of 221 mAh·g−1 was maintained even after 2000 cycles). This work provides a guide for the design of high-performance cathode materials for aqueous zinc metal batteries.
Jiang, M. X.; Hu, Y. J.; Mao, B. G.; Wang, Y. X.; Yang, Z.; Meng, T.; Wang, X.; Cao, M. H. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nat. Commun. 2022, 13, 5588.
Li, R. T.; Du, Y. X.; Li, Y. H.; He, Z. X.; Dai, L.; Wang, L.; Wu, X. W.; Zhang, J. J.; Yi, J. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2023, 8, 457–476.
Li, T. J.; Sun, J. C.; Gao, S. Z.; Xiao, B.; Cheng, J. B.; Zhou, Y. L.; Sun, X. Q.; Jiang, F. Y.; Yan, Z. H.; Xiong, S. L. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 2021, 11, 2003699.
Song, Y.; Ruan, P. C.; Mao, C. W.; Chang, Y. X.; Wang, L.; Dai, L.; Zhou, P.; Lu, B. G.; Zhou, J.; He, Z. X. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022, 14, 218.
Wang, T. T.; Wang, P. J.; Pan, L.; He, Z. X.; Dai, L.; Wang, L.; Liu, S. D.; Jun, S. C.; Lu, B. G.; Liang, S. Q. et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 2023, 13, 2203523.
Meng, T.; Sun, P. P.; Yang, F.; Zhu, J.; Mao, B. G.; Zheng, L. R.; Cao, M. H. Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2214089119.
Lv, T. T.; Peng, Y.; Zhang, G. X.; Jiang, S.; Yang, Z. L.; Yang, S. Y.; Pang, H. How about vanadium-based compounds as cathode materials for aqueous zinc ion batteries? Adv. Sci. 2023, 10, 2206907.
Li, Y.; Peng, X. Y.; Li, X.; Duan, H.; Xie, S. Y.; Dong, L. B.; Kang, F. Y. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 2023, 35, 2300019.
Qu, G.; Guo, K.; Chen, W. J.; Du, Y.; Wang, Y.; Tian, B. B.; Zhang, J. N. Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 2023, 6, e12502.
Du, M.; Liu, C. F.; Zhang, F.; Dong, W. T.; Zhang, X. F.; Sang, Y. H.; Wang, J. J.; Guo, Y. G.; Liu, H.; Wang, S. H. Tunable layered (Na,Mn)V8O20· nH2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 2020, 7, 2000083.
Zuo, Y.; Meng, T. F.; Tian, H.; Ling, L.; Zhang, H. L.; Zhang, H.; Sun, X. H.; Cai, S. Enhanced H+ storage of a MnO2 cathode via a MnO2 nanolayer interphase transformed from manganese phosphate. ACS Nano 2023, 17, 5600–5608.
Zhang, N.; Wang, J. C.; Guo, Y. F.; Wang, P. F.; Zhu, Y. R.; Yi, T. F. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord. Chem. Rev. 2023, 479, 215009.
He, Q.; Chen, Z. B.; Niu, X. Y.; Han, X. R.; Kang, T.; Chen, J. Y.; Ma, Y. W.; Zhao, J. Amorphous vanadium oxides for electrochemical energy storage. Nano Res. 2023, 16, 9195–9213.
Lv, T. T.; Luo, X.; Yuan, G. Q.; Yang, S. Y.; Pang, H. Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 428, 131211.
Gu, X.; Wang, J. T.; Zhao, X. B.; Jin, X.; Jiang, Y. Z.; Dai, P. C.; Wang, N. N.; Bai, Z. C.; Zhang, M. D.; Wu, M. B. Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries. J. Energy Chem. 2023, 85, 30–38.
Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081
Chen, H. Z.; Qin, H. G.; Chen, L. L.; Wu, J.; Yang, Z. H. V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability. J. Alloys Compd. 2020, 842, 155912
Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.
Cui, F. H.; Zhao, J.; Zhang, D. X.; Fang, Y. Z.; Hu, F.; Zhu, K. VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chem. Eng. J. 2020, 390, 124118.
Liu, Y. Y.; Lv, T. T.; Wang, H.; Guo, X. T.; Liu, C. S.; Pang, H. Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chem. Eng. J. 2021, 417, 128408.
Ding, J. W.; Zheng, H. Y.; Gao, H. G.; Liu, Q. N.; Hu, Z.; Han, L. F.; Wang, S. W.; Wu, S. D.; Fang, S. M.; Chou, S. L. In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy Mater. 2021, 11, 2100973
Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224
Xie, L.; Xiao, W. H.; Shi, X. Y.; Hong, J. Z.; Cai, J. J.; Zhang, K. L.; Shao, L. Y.; Sun, Z. P. VO2·0.26H2O nanobelts@reduced graphene oxides as cathode materials for high-performance aqueous zinc ion batteries. Chem. Commun. 2022, 58, 13807–13810
Fan, X. K.; Wen, X. Y.; Tang, Y.; Zhou, W.; Xiang, K. X.; Chen, H. β-VO2/carbon nanotubes core-shelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries. Electrochim. Acta 2021, 400, 139425
Wang, C. Y.; Wang, M. Q.; Liu, L.; Huang, Y. D. 3D porous sponge-inspired electrode for high-energy and high-power zinc-ion batteries. ACS Appl. Energy Mater. 2021, 4, 1833–1839
Lane, M. K. M.; Rudel, H. E.; Wilson, J. A.; Erythropel, H. C.; Backhaus, A.; Gilcher, E. B.; Ishii, M.; Jean, C. F.; Lin, F.; Muellers, T. D. et al. Green chemistry as just chemistry. Nat. Sustain. 2023, 6, 502–512.
Song, D. M.; Yu, J. D.; Wang, M. M.; Tan, Q. Y.; Liu, K.; Li, J. H. Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy. Energy Storage Mater. 2023, 61, 102870.
Xue, M. D.; Bai, J.; Wu, M. C.; He, Q. Q.; Zhang, Q. C.; Chen, L. Y. Carbon-assisted anodes and cathodes for zinc ion batteries: From basic science to specific applications, opportunities and challenges. Energy Storage Mater. 2023, 62, 102940.
Gao, S. Z.; Ju, P.; Liu, Z. Q.; Zhai, L.; Liu, W. B.; Zhang, X. Y.; Zhou, Y. L.; Dong, C. F.; Jiang, F. Y.; Sun, J. C. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J. Energy Chem. 2022, 69, 356–362.
Zhu, K. Y.; Wu, T.; Sun, S. C.; Van Den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.
Li, S. L.; Wei, X. J.; Chen, H. P.; Lai, G. Y.; Wang, X. P.; Zhang, S. J.; Wu, S. X.; Tang, W. T.; Lin, Z. A mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 22392–22398.
Yuan, X.; Nie, Y. G.; Zou, T.; Deng, C. L.; Zhang, Y. P.; Wang, Z. Y.; Wang, J. Y.; Zhang, C. L.; Ye, E. J. Polyaniline-intercalated vanadium dioxide nanoflakes for high-performance aqueous zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 13692–13701.
Wang, Y. X.; Wang, X.; Zhao, B.; Ren, Z. X.; Yao, Z. S.; Wei, W.; Wang, J.; Qin, J. W.; Xie, J.; Cao, M. H. Molecular-level identification of organic species of ether-based solid-electrolyte interphase in sodium-ion batteries. Nano Energy 2024, 120, 109163.
Li, X.; Li, Y.; Zhao, X.; Kang, F. Y.; Dong, L. B. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 2022, 53, 505–513.