AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

A review of microwave–metal discharge interaction: Mechanism, regulation, and application for synthesis of nanomaterials

Yixuan Xie1Ruiqian Shi1Benwei Fu1Chengyi Song1Wen Shang1Peng Tao1,2( )Tao Deng1( )
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, Shanghai 200030, China
Show Author Information

Graphical Abstract

This work provides a comprehensive review on fundamental mechanism and systematic regulation of microwave–metal discharge interaction and its application for synthesis of functional nanomaterials including core–shell carbon/metal, metal oxides, metal chalcogenides, intermetallic compounds, metallic nanoparticles and metallic compounds, and organic compounds.

Abstract

Placing metals within microwave ovens has been generally viewed as a dangerous practice because of occurrence of violent discharge, but in recent years such discharge phenomenon has attracted increasing attention and has enabled a variety of exciting applications. In this work, we provide a comprehensive review of fundamental understanding of microwave–metal discharge interaction and its state-of-the-art application for nanomaterials synthesis. We introduce the microscopic interaction between different categories of materials and the electric and magnetic field of microwaves. For microwave–metal interaction, we highlight its size-dependence and point out the influence of the oxide layer on the surface of metals. We discuss the required conditions for occurrence of discharge, microscopic formation mechanism, and characteristic features of microwave–metal discharge processes. Through analyzing the influence from the microwave input, discharging metals, and surrounding discharging media, we discuss the strategy for systematical regulation of the discharge process. We describe the applications of the microwave–metal discharge for facile synthesis of various functional nanomaterials including core–shell carbon/metal, metal oxides, metal chalcogenides, intermetallic compounds, metallic nanoparticles and metallic compounds, and organic compounds. Finally, the challenges in precise characterization and dynamic regulation of the discharge process as well as exciting application opportunities are discussed.

References

[1]

Sutton, W. H. Microwave processing of materials. MRS Bull. 1993, 18, 22–29.

[2]

Penzias, A. A.; Wilson, R. W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 1965, 142, 419–421.

[3]

Sharma, A. K.; Mishra, R. R. Role of particle size in microwave processing of metallic material systems. Mater. Sci. Technol. 2018, 34, 123–137.

[4]

Guo, Q. S.; Sun, D. W.; Cheng, J. H.; Han, Z. Microwave processing techniques and their recent applications in the food industry. Trends Food Sci. Technol. 2017, 67, 236–247.

[5]

Tang, J. M. Unlocking potentials of microwaves for food safety and quality. J. Food Sci. 2015, 80, E1776–E1793.

[6]

Foong, S. Y.; Liew, R. K.; Yang, Y. F.; Cheng, Y. W.; Yek, P. N. Y.; Mahari, W. A. W.; Lee, X. Y.; Han, C. S.; Vo, D. V. N.; Van Le, Q. et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 2020, 389, 124401.

[7]

Roy, R.; Agrawal, D.; Cheng, J. P.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670.

[8]

Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 2010, 494, 175–189.

[9]

De La Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005, 34, 164–178.

[10]

Kappe, C. O. Controlled microwave heating in modern organic synthesis. Angew. Chem., Int. Ed. 2004, 43, 6250–6284.

[11]

Zhu, Y. J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555.

[12]

Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2, 1358–1374.

[13]

Strassner, B.; Chang, K. Microwave power transmission: Historical milestones and system components. Proc. IEEE 2013, 101, 1379–1396.

[14]
Cameron, R. J.; Kudsia, C. M.; Mansour, R. R. Microwave Filters for Communication Systems: Fundamentals, Design and Applications, 2nd ed.; Wiley: Hoboken, 2018.
[15]

Chandra, R.; Zhou, H. Y.; Balasingham, I.; Narayanan, R. M. On the opportunities and challenges in microwave medical sensing and imaging. IEEE Trans. Biomed. Eng. 2015, 62, 1667–1682.

[16]

Redlarski, G.; Lewczuk, B.; Żak, A.; Koncicki, A.; Krawczuk, M.; Piechocki, J.; Jakubiuk, K.; Tojza, P.; Jaworski, J.; Ambroziak, D. et al. The influence of electromagnetic pollution on living organisms: Historical trends and forecasting changes. Biomed Res. Int. 2015, 2015, 234098.

[17]

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

[18]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[19]

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

[20]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[21]

Herring, G. C.; Popović, S. Microwave air breakdown enhanced with metallic initiators. Appl. Phys. Lett. 2008, 92, 131501.

[22]

Sun, J.; Wang, W. L.; Yue, Q. Y.; Ma, C. Y.; Zhang, J. S.; Zhao, X. Q.; Song, Z. L. Review on microwave–metal discharges and their applications in energy and industrial processes. Appl. Energy 2016, 175, 141–157.

[23]

Mishra, R. R.; Sharma, A. K. A review of research trends in microwave processing of metal-based materials and opportunities in microwave metal casting. Crit. Rev. Solid State Mater. Sci. 2016, 41, 217–255.

[24]

Matli, P. R.; Shakoor, R. A.; Mohamed, A. M. A.; Gupta, M. Microwave rapid sintering of Al-metal matrix composites: A review on the effect of reinforcements, microstructure and mechanical properties. Metals 2016, 6, 143.

[25]

Xu, F.; Liu, W. C.; Xiao, Y.; Dong, B.; Hu, X. F.; Wu, X. P. High-speed tomography of local-plasma-induced rapid microwave sintering of aluminum. Appl. Phys. Lett. 2017, 110, 101904.

[26]

Druzhinina, T. S.; Hoeppener, S.; Schubert, U. S. Microwave-assisted fabrication of carbon nanotube AFM tips. Nano Lett. 2010, 10, 4009–4012.

[27]

Takagi, Y.; Tauchi, L.; Nguyen-Tran, H. D.; Ohta, T.; Shimizu, M.; Ohta, K. Development of a novel method to synthesize carbon nanotubes from granulated polystyrene and nickel nanoparticles by microwave heating. J. Mater. Chem. 2011, 21, 14569–14574.

[28]

Ano, T.; Tsubaki, S.; Fujii, S.; Wada, Y. Designing local microwave heating of metal nanoparticles/metal oxide substrate composites. J. Phys. Chem. C 2021, 125, 23720–23728.

[29]

Druzhinina, T.; Weltjens, W.; Hoeppener, S.; Schubert, U. S. The selective heating of iron nanoparticles in a single-mode microwave for the patterned growths of carbon nanofibers and nanotubes. Adv. Funct. Mater. 2009, 19, 1287–1292.

[30]

Wu, S. Y.; Liu, Y. Z.; Ren, Y.; Wei, Q. L.; Sun, Y. G. Microwave synthesis of single-phase nanoparticles made of multi-principal element alloys. Nano Res. 2022, 15, 4886–4892.

[31]

Dang, C. Q.; Chou, J. P.; Dai, B.; Chou, C. T.; Yang, Y.; Fan, R.; Lin, W. T.; Meng, F. L.; Hu, A.; Zhu, J. Q. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 2021, 371, 76–78.

[32]

Ren, Y.; Li, X. G.; Lv, W.; Dong, H. Y.; Cheng, Q. H.; Yue, F.; Wöhrl, N.; Mendes, J. C.; Yang, X.; Li, Z. X. Recent progress in homoepitaxial single-crystal diamond growth via MPCVD. J. Mater. Sci.: Mater. Electron. 2024, 35, 525.

[33]

Arnault, J. C.; Saada, S.; Ralchenko, V. Chemical vapor deposition single-crystal diamond: A review. Phys. Status Solidi. Rapid Res. Lett. 2022, 16, 2100354.

[34]
Rybakov, K. I.; Semenov, V. E. Microwave heating of ensembles of spherical metal particles surrounded by insulating layers. In Processing, Properties, and Design of Advanced Ceramics and Composites: Ceramic Transactions; Singh, G.; Bhalla, A.; Mahmoud, M. M.; Castro, R. H. R.; Bansal, N. P.; Zhu, D. M.; Singh, J. P.; Wu, Y. Q., Eds.; John Wiley & Sons, Inc.: Hoboken, 2016; pp 223–231.
[35]

El Khaled, D.; Novas, N.; Gazquez, J. A.; Manzano-Agugliaro, F. Microwave dielectric heating: Applications on metals processing. Renew. Sustain. Energy Rev. 2018, 82, 2880–2892.

[36]

Mishra, R. R.; Sharma, A. K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. Part A: Appl. Sci. Manuf. 2016, 81, 78–97.

[37]

Sun, J.; Wang, W. L.; Yue, Q. Y. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231.

[38]

Zhang, Y.; Agrawal, D. K.; Cheng, J. P.; Slawecki, T. Microwave power absorption mechanism of metallic powders. IEEE Trans. Microw. Theory Tech. 2018, 66, 2107–2115.

[39]

Ignatenko, M.; Tanaka, M.; Sato, M. Absorption of microwave energy by a spherical nonmagnetic metal particle. Jpn. J. Appl. Phys. 2009, 48, 067001.

[40]

Whittaker, A. G.; Mingos, D. M. P. Microwave-assisted solid-state reactions involving metal powders. J. Chem. Soc., Dalton Trans. 1995, 2073–2079

[41]

Luo, J. R.; Hunyar, C.; Feher, L.; Link, G.; Thumm, M.; Pozzo, P. Theory and experiments of electromagnetic loss mechanism for microwave heating of powdered metals. Appl. Phys. Lett. 2004, 84, 5076–5078.

[42]

Rosa, R.; Veronesi, P.; Casagrande, A.; Leonelli, C. Microwave ignition of the combustion synthesis of aluminides and field-related effects. J. Alloys Compd. 2016, 657, 59–67.

[43]

Anzulevich, A. P.; Butko, L. N.; Bychkov, I. V.; Buchelnikov, V. D.; Kalganov, D. A.; Pavlov, D. A.; Fediy, A. A.; Kharitonova, O. G.; Moiseev, S. G. Dynamic magnetic losses in powders consisting of metallized dielectric particles at microwaves. J. Magn. Magn. Mater. 2017, 444, 307–312.

[44]

Siebert, J. P.; Hamm, C. M.; Birkel, C. S. Microwave heating and spark plasma sintering as non-conventional synthesis methods to access thermoelectric and magnetic materials. Appl. Phys. Rev. 2019, 6, 041314.

[45]

Lekse, J. W.; Stagger, T. J.; Aitken, J. A. Microwave metallurgy: Synthesis of intermetallic compounds via microwave irradiation. Chem. Mater. 2007, 19, 3601–3603.

[46]

Wanasinghe, D.; Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. B: Eng. 2019, 176, 107207.

[47]

Whittaker, A. G.; Mingos, D. M. P. Microwave-assisted solid-state reactions involving metal powders and gases. J. Chem. Soc., Dalton Trans. 1993, 2541–2543

[48]
Gupta, M.; Eugene, W. W. L. Microwaves and Metals; John Wiley & Sons (Asia): Singapore, 2007.
[49]

Mondal, A.; Agrawal, D.; Upadhyaya, A. Microwave heating of pure copper powder with varying particle size and porosity. J. Microw. Power Electromagn. Energy 2008, 43, 5–10.

[50]
Rossiter, P. L. The Electrical Resistivity of Metals and Alloys; Cambridge University Press: Cambridge, 1987.
[51]
Ida, N. Engineering Electromagnetics, 4th ed.; Springer: Cham, 2021.
[52]

Chen, W.; Gutmann, B.; Kappe, C. O. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures. ChemistryOpen 2012, 1, 39–48.

[53]

Szabó, D. V.; Schlabach, S. Microwave plasma synthesis of materials-from physics and chemistry to nanoparticles: A materials scientist’s viewpoint. Inorganics 2014, 2, 468–507.

[54]

Qiao, H. Y.; Saray, M. T.; Wang, X. Z.; Xu, S. M.; Chen, G.; Huang, Z. N.; Chen, C. J.; Zhong, G.; Dong, Q.; Hong, M. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 2021, 15, 14928–14937.

[55]

Zhong, G.; Xu, S. M.; Cui, M. J.; Dong, Q.; Wang, X. Z.; Xia, Q. Q.; Gao, J. L.; Pei, Y.; Qiao, Y.; Pastel, G. et al. Rapid, high-temperature, in situ microwave synthesis of bulk nanocatalysts. Small 2019, 15, 1904881.

[56]

Buchelnikov, V. D.; Louzguine-Luzgin, D. V.; Anzulevich, A. P.; Bychkov, I. V.; Yoshikawa, N.; Sato, M.; Inoue, A. Modeling of microwave heating of metallic powders. Phys. B: Condens. Matter 2008, 403, 4053–4058.

[57]

Zhong, G.; Xu, S. M.; Chen, C. J.; Kline, D. J.; Giroux, M.; Pei, Y.; Jiao, M. L.; Liu, D. P.; Mi, R. Y.; Xie, H. et al. Synthesis of metal oxide nanoparticles by rapid, high-temperature 3D microwave heating. Adv. Funct. Mater. 2019, 29, 1904282.

[58]

Zhou, J.; Li, Y. G.; Yang, T.; Xue, W. Z.; Hao, X. Z.; Gao, J. Microwave heating and processing of solid metals using electromagnetic resonators. Int. J. Adv. Manuf. Technol. 2022, 123, 1111–1121.

[59]

Sathish, T.; Chandramohan, D.; Vijayan, V.; Sebastian, P. J. Investigation on microstructural and mechanical properties of Cu reinforced with SiC composites prepared by microwave sintering process. J. New Mater. Electrochem. Syst. 2019, 22, 5–9.

[60]

Reddy, M. P.; Manakari, V.; Parande, G.; Shakoor, R. A.; Mohamed, A. M. A.; Gupta, M. Structural, mechanical and thermal characteristics of Al-Cu-Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion. Compos. Part B: Eng. 2019, 164, 485–492.

[61]

Prakash, C.; Singh, S.; Ramakrishna, S.; Królczyk, G.; Le, C. H. Microwave sintering of porous Ti-Nb-HA composite with high strength and enhanced bioactivity for implant applications. J. Alloys Compd. 2020, 824, 153774.

[62]

Sueyoshi, H.; Hashiguchi, T.; Nakatsuru, N.; Kakiuchi, S. Effect of surface oxide film and atmosphere on microwave heating of compacted copper powder. Mater. Chem. Phys. 2011, 125, 723–728.

[63]

Mahmoud, M. M. Characterization of the native oxide shell of copper metal powder spherical particles. Materials 2022, 15, 7236.

[64]

Mahmoud, M. M.; Link, G.; Thumm, M. The role of the native oxide shell on the microwave sintering of copper metal powder compacts. J. Alloys Compd. 2015, 627, 231–237.

[65]

Rybakov, K. I.; Semenov, V. E.; Egorov, S. V.; Eremeev, A. G.; Plotnikov, I. V.; Bykov, Y. V. Microwave heating of conductive powder materials. J. Appl. Phys. 2006, 99, 023506.

[66]

Sarkar, S.; Jana, P. K.; Chaudhuri, B. K.; Sakata, H. Copper(II) oxide as a giant dielectric material. Appl. Phys. Lett. 2006, 89, 212905.

[67]

Rybakov, K. I.; Buyanova, M. N. Microwave resonant sintering of powder metals. Scr. Mater. 2018, 149, 108–111.

[68]

Rybakov, K. I.; Semenov, V. E. Effective microwave dielectric properties of ensembles of spherical metal particles. IEEE Trans. Microw. Theory Tech. 2017, 65, 1479–1487.

[69]

Crane, C. A.; Pantoya, M. L.; Weeks, B. L.; Saed, M. The effects of particle size on microwave heating of metal and metal oxide powders. Powder Technol. 2014, 256, 113–117.

[70]

Biswas, K.; Muir, S.; Subramanian, M. A. Rapid microwave synthesis of indium filled skutterudites: An energy efficient route to high performance thermoelectric materials. Mater. Res. Bull. 2011, 46, 2288–2290.

[71]
Horikoshi, S.; Osawa, A.; Sakamoto, S.; Serpone, N. Control of microwave-generated hot spots. Part V. Mechanisms of hot-spot generation and aggregation of catalyst in a microwave-assisted reaction in toluene catalyzed by Pd-loaded AC particulates. Appl. Catal. A: Gen. 2013 , 460–461, 52–60.
[72]

Mogîldea, G.; Mogîldea, M.; Zgura, S. I.; Craciun, D.; Popa, C.; Prepelita, P.; Bazavan, M. C.; Craciun, V. The assessment of the atmospheric air breakdown voltage generated by the interaction between microwaves and metallic wires. Phys. Scr. 2023, 98, 045508.

[73]

Li, X. G.; Pang, C. R.; Li, H.; Gao, X. Microwave energy inductive fluidized metal particles discharge behavior and its potential utilization in reaction intensification. Chin. J. Chem. Eng. 2021, 33, 256–267.

[74]

Demirskyi, D.; Agrawal, D.; Ragulya, A. Neck formation between copper spherical particles under single-mode and multimode microwave sintering. Mater. Sci. Eng. A 2010, 527, 2142–2145.

[75]

Liu, W. C.; Xu, F.; Li, Y. C.; Hu, X. F.; Dong, B.; Xiao, Y. Discussion on microwave–matter interaction mechanisms by in situ observation of “core–shell” microstructure during microwave sintering. Materials 2016, 9, 120.

[76]

Song, S. X.; Wang, Z.; Shi, G. P. Heating mechanism of spark plasma sintering. Ceram. Int. 2013, 39, 1393–1396.

[77]

Demirskyi, D.; Agrawal, D.; Ragulya, A. Neck growth kinetics during microwave sintering of copper. Scr. Mater. 2010, 62, 552–555.

[78]

Van De Kruijs, B. H.; Dressen, M. H. C. L.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. Microwave-induced electrostatic etching: Generation of highly reactive magnesium for application in Grignard reagent formation. Org. Biomol. Chem. 2010, 8, 1688–1694.

[79]

Feng, Y. K.; Wang, W. L.; Wang, Y. C.; Sun, J.; Zhang, C.; Shahzad, Q.; Mao, Y. P.; Zhao, X. Q.; Song, Z. L. Experimental study of destruction of acetone in exhaust gas using microwave-induced metal discharge. Sci. Total Environ. 2018, 645, 788–795.

[80]

Tripathi, V.; Kumar, H.; Agarwal, A.; Panchakarla, L. S. Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions. Beilstein J. Nanotechnol. 2020, 11, 1019–1025.

[81]

Qiao, X. C.; Xie, X. Y. The effect of electric field intensification at interparticle contacts in microwave sintering. Sci. Rep. 2016, 6, 32163.

[82]

Li, Y. C.; Xu, F.; Hu, X. F.; Luan, Y. B.; Han, Z. J.; Wang, Z. Y. Focusing effect of electromagnetic fields and its influence on sintering during the microwave processing of metallic particles. J. Mater. Res. 2015, 30, 3663–3670.

[83]

Li, Y. C.; Xu, F.; Luan, Y. B.; Yan, X. P.; Dong, B.; Shen, Y. R.; Hu, X. F. Investigation on local focus effect of electromagnetic fields and its influence on sintering during microwave processing of metallic-ceramic composite. J. Alloys Compd. 2016, 687, 943–953.

[84]

Manière, C.; Lee, G.; Zahrah, T.; Olevsky, E. A. Microwave flash sintering of metal powders: From experimental evidence to multiphysics simulation. Acta Mater. 2018, 147, 24–34.

[85]

Lekner, J. Analytical expression for the electric field enhancement between two closely-spaced conducting spheres. J. Electrost. 2010, 68, 299–304.

[86]

Liao, Y. H.; Hong, T.; Xiao, W. Local electric field enhancements of two closely spaced subwavelength spheres in microwaves. IEEE Trans. Plasma Sci. 2022, 50, 3547–3556.

[87]

Liao, Y. H.; Hong, T.; Xiao, W.; Zhou, L. Local field enhancements of periodical metallic powders in microwaves. IEEE Trans. Plasma Sci. 2022, 50, 2049–2057.

[88]

Cai, D. Q.; Tan, Y. D.; Zhang, L. J.; Sun, J. F.; Zhang, Y.; Li, L. Z.; Zhang, Q.; Zou, G. F.; Song, Z. L.; Bai, Y. H. Dynamic characteristics and energy analysis of microwave-induced metal discharge. J. Energy Inst. 2022, 100, 277–284.

[89]

Xue, C.; Mao, Y. P.; Wang, W. L.; Song, Z. L.; Zhao, X. Q.; Sun, J.; Ma, C. Y. Study of microwave-induced metal discharge under high pressure based on spectrum analysis. J. Electromagn. Waves Appl. 2018, 32, 2442–2457.

[90]

Mogîldea, G.; Mogîldea, M.; Jivǎnescu, I.; Porosnicu, C.; Lungu, M.; Chiriţoi, G.; Mingireanu, F. Direct vaporization and ionization of the metals wires using microwave field. J. Optoelectron. Adv. Mater. 2015, 17, 367–371.

[91]

McMahon, J. M.; Li, S. Z.; Ausman, L. K.; Schatz, G. C. Modeling the effect of small gaps in surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2012, 116, 1627–1637.

[92]

Kuttge, M.; Cai, W.; de Abajo, F. J. G.; Polman, A. Dispersion of metal–insulator–metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy. Phys. Rev. B 2009, 80, 033409.

[93]

Baumberg, J. J.; Aizpurua, J.; Mikkelsen, M. H.; Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678.

[94]

Khattak, H. K.; Bianucci, P.; Slepkov, A. D. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc. Natl. Acad. Sci. USA 2019, 116, 4000–4005.

[95]

Mogildea, M.; Mogildea, G.; Craciun, V.; Zgura, S. I. The effects induced by microwave field upon tungsten wires of different diameters. Materials 2021, 14, 1036.

[96]

Yan, J. Y.; Li, S. C.; Yang, Z.; Cai, W. J.; Ou, M.; Li, J. Z. Theoretical and experimental studies on localized electric field during microwave drilling of metals. J. Microw. Power Electromagn. Energy 2023, 57, 44–54.

[97]

Zou, D. D.; Pan, H. Y.; Qaisrani, M. H. Partial discharge breakdown characteristics under needle-plate defect configuration. AIP Adv. 2021, 11, 025042.

[98]
Shayeganrad, G.; Mashhadi, L. Theoretically and experimentally investigation of sparking of metal objects inside a microwave oven. In Proceedings of Progress in Electromagnetics Research Symposium, Beijing, China, 2009, pp 622–631.
[99]

Sun, J.; Wang, W. L.; Zhao, C.; Zhang, Y. L.; Ma, C. Y.; Yue, Q. Y. Study on the coupled effect of wave absorption and metal discharge generation under microwave irradiation. Ind. Eng. Chem. Res. 2014, 53, 2042–2051.

[100]

Kaewyai, K.; Choopun, S.; Gardchareon, A.; Ruankham, P.; Phadungdhitidhada, S.; Wongratanaphisan, D. Mechanism and experimental evidence of rapid morphological variant of copper oxide nanostructures by microwave heating. Appl. Surf. Sci. 2019, 474, 9–16.

[101]

Sun, J.; Yu, G. Q.; An, K.; Wang, W. L.; Wang, B.; Jiang, Z. Y.; Sun, C. G.; Mao, Y. P.; Zhao, X. Q.; Song, Z. L. Microwave-induced high-energy sites and targeted energy transition promising for efficient energy deployment. Front. Energy 2021, 16, 931–942.

[102]

Singh, A.; Sharma, A. K. On microwave drilling of metal-based materials at 2.45 GHz. Appl. Phys. A 2020, 126, 822.

[103]

Whittaker, A. G.; Mingos, D. M. P. Arcing and other microwave characteristics of metal powders in liquid systems. J. Chem. Soc., Dalton Trans. 2000, 1521–1526

[104]

Zhou, H. Y.; Li, X.; Zhu, Y. C.; Liu, J. M.; Wu, A. X.; Ma, G. M.; Wang, X. L.; Jia, Z. D.; Wang, L. M. Review of flash sintering with strong electric field. High Volt. 2022, 7, 1–11.

[105]

Liang, Y. C.; Hwang, K. C.; Lo, S. C. Solid-state microwave-arcing-induced formation and surface functionalization of core/shell metal/carbon nanoparticles. Small 2008, 4, 405–409.

[106]

Lebedev, Y. A. Microwave discharges: Generation and diagnostics. J. Phys.: Conf. Ser. 2010, 257, 012016.

[107]

Lebedev, Y. A. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sources Sci. Technol. 2015, 24, 053001.

[108]

Gupta, P.; Singh, A.; Sharma, A. K.; Singh, I. Influence of liquid dielectric medium on microwave–metal discharge-based drilling of AISI 304 stainless steel. Appl. Phys. A 2023, 129, 150.

[109]
Boulos, M. I.; Fauchais, P. L.; Pfender, E. The plasma state. In Handbook of Thermal Plasmas; Boulos, M. I.; Fauchais, P. L.; Pfender, E., Eds.; Springer: Cham, 2023; pp 3–55.
[110]

Shao, S. S.; Ye, Z. A.; Sun, J. Y.; Liu, C. Y.; Yan, J. L.; Liu, T. Y.; Li, X. H.; Zhang, H. Y.; Xiao, R. A review on the application of non-thermal plasma (NTP) in the conversion of biomass: Catalyst preparation, thermal utilization and catalyst regeneration. Fuel 2022, 330, 125420.

[111]

Yao, J. P.; Wang, L. J.; Chen, J. M.; Wan, Y. X.; Zhang, Z. H.; Zhang, F. B.; Qiao, L. L.; Yu, S. P.; Fu, B. T.; Zhao, Z. X. et al. Photon retention in coherently excited nitrogen ions. Sci. Bull. 2021, 66, 1511–1517.

[112]

Singh, A.; Sharma, A. K. Effect of drilling conditions on microwave-metal discharge during microwave drilling of stainless steel. Appl. Mech. Mater. 2019, 895, 253–258.

[113]

Wang, W. L.; Liu, Z.; Sun, J.; Ma, Q. L.; Ma, C. Y.; Zhang, Y. L. Experimental study on the heating effects of microwave discharge caused by metals. AIChE J. 2012, 58, 3852–3857.

[114]

Gutmann, B.; Schwan, A. M.; Reichart, B.; Gspan, C.; Hofer, F.; Kappe, C. O. Activation and deactivation of a chemical transformation by an electromagnetic field: Evidence for specific microwave effects in the formation of Grignard reagents. Angew. Chem., Int. Ed. 2011, 50, 7636–7640.

[115]

Putra, P. H. M.; Rozali, S.; Patah, M. F. A.; Idris, A. A review of microwave pyrolysis as a sustainable plastic waste management technique. J. Environ. Manage. 2022, 303, 114240.

[116]

Horikoshi, S.; Kamata, M.; Mitani, T.; Serpone, N. Control of microwave-generated hot spots. 6. Generation of hot spots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media. Ind. Eng. Chem. Res. 2014, 53, 14941–14947.

[117]

Song, Z. L.; Yan, Y. C.; Xie, M. M.; Lv, X.; Yang, Y. Q.; Liu, L.; Zhao, X. Q. Effect of steel wires on the microwave pyrolysis of tire powders. ACS Sustain. Chem. Eng. 2018, 6, 13443–13453.

[118]

Popescu, S.; Jerby, E.; Meir, Y.; Barkay, Z.; Ashkenazi, D.; Mitchell, J. B. A.; Le Garrec, J. L.; Narayanan, T. Plasma column and nano-powder generation from solid titanium by localized microwaves in air. J. Appl. Phys. 2015, 118, 023302.

[119]

Debalina, B.; Reddy, R. B.; Vinu, R. Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors. J. Anal. Appl. Pyrolysis 2017, 124, 310–318.

[120]

Pentsak, E. O.; Cherepanova, V. A.; Sinayskiy, M. A.; Samokhin, A. V.; Ananikov, V. P. Systematic study of the behavior of different metal and metal-containing particles under the microwave irradiation and transformation of nanoscale and microscale morphology. Nanomaterials 2018, 9, 19.

[121]

Vijh, A. K. Electric strength and molecular properties of gaseous dielectrics. IEEE Trans. Electr. Insul. 1977, EI-12, 313–315

[122]

Ramesh, P. D.; Rao, K. J. Microwave-assisted synthesis of aluminum nitride. Adv. Mater. 1995, 7, 177–179.

[123]

Park, C.; Graber, L.; Cheetham, P.; Al-Taie, A.; Telikapalli, S.; Pamidi, S. Versatile Paschen’s model for the dielectric strength estimation of binary and ternary gas mixtures. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1569–1576.

[124]

Sun, J.; Wang, Q.; Wang, W. L.; Wang, K. Plasma catalytic steam reforming of a model tar compound by microwave-metal discharges. Fuel 2018, 234, 1278–1284.

[125]
Berger, L. I. Dieletric strength of insuating materials. In CRC Handbook of Chemistry and Physics, 95th ed.; Haynes, W. M.; Lide, D. R.; Bruno, T. J., Eds.; CRC Press: Boca Raton, 2014; pp 15–46–15–50.
[126]

Ishida, Y.; Motono, S.; Doshin, W.; Tokunaga, T.; Tsukamoto, H.; Yonezawa, T. Small nanosized oxygen-deficient tungsten oxide particles: Mechanistic investigation with controlled plasma generation in water for their preparation. ACS Omega 2017, 2, 5104–5110.

[127]

Yonezawa, T.; Čempel, D.; Nguyen, M. T. Microwave-induced plasma-in-liquid process for nanoparticle production. Bull. Chem. Soc. Japan 2018, 91, 1781–1798.

[128]

Zhang, L. J.; Tan, Y. D.; Cai, D. Q.; Sun, J. F.; Zhang, Y.; Li, L. Z.; Zhang, Q.; Zou, G. F.; Song, Z. L.; Bai, Y. H. Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties. Energy 2022, 249, 123667.

[129]

Zhou, G. T.; Palchik, O.; Pol, V. G.; Sominski, E.; Koltypin, Y.; Gedanken, A. Microwave-assisted solid-state synthesis and characterization of intermetallic compounds of Li3Bi and Li3Sb. J. Mater. Chem. 2003, 13, 2607–2611.

[130]

Kumar, G.; Sharma, A. K. Role of dielectric fluid and concentrator material in microwave drilling of borosilicate glass. J. Manuf. Process. 2018, 33, 184–193.

[131]

Hattori, Y.; Nomura, S.; Mukasa, S.; Toyota, H.; Inoue, T.; Kasahara, T. Synthesis of tungsten trioxide nanoparticles by microwave plasma in liquid and analysis of physical properties. J. Alloys Compd. 2013, 560, 105–110.

[132]

Das, S. P.; Dalei, G.; Barik, A. A dielectric barrier discharge (DBD) plasma reactor: An efficient tool to measure the sustainability of non-thermal plasmas through the electrical breakdown of gases. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 410, 012004.

[133]

Breen, A.; Milosavljević, V.; Dowling, D. P. Influence of gas type on the thermal efficiency of microwave plasmas for the sintering of metal powders. Plasma Chem. Plasma Process. 2011, 31, 771–785.

[134]

Risco, Á.; Sucunza, D.; González-Egido, S. Chemical recovery of waste electrical and electronic equipment by microwave-assisted pyrolysis: A review. J. Anal. Appl. Pyrolysis 2021, 159, 105323.

[135]

Sun, J.; Wang, K.; Song, Z. L.; Lv, Y. T.; Chen, S. Y. Enhancement of bio-oil quality: Metal-induced microwave-assisted pyrolysis coupled with ex-situ catalytic upgrading over HZSM-5. J. Anal. Appl. Pyrolysis 2019, 137, 276–284.

[136]
Singhasathein, A.; Pruksanubal, A.; Tanthanuch, N.; Rungseevijitprapa, W. Dielectric strength of breakdown voltage of nitrogen and carbon-dioxide. In Proceedings of the 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 2013, pp 1–5.
[137]

Vollath, D.; Szabó, D. V. The Microwave plasma process—A versatile process to synthesise nanoparticulate materials. J. Nanopart. Res. 2006, 8, 417–428.

[138]

Hussain, Z.; Khan, K. M.; Hussain, K. Microwave–metal interaction pyrolysis of polystyrene. J. Anal. Appl. Pyrolysis 2010, 89, 39–43.

[139]

Graves, B.; Engelke, S.; Jo, C.; Baldovi, H. G.; De La Verpilliere, J.; De Volder, M.; Boies, A. Plasma production of nanomaterials for energy storage: Continuous gas-phase synthesis of metal oxide CNT materials via a microwave plasma. Nanoscale 2020, 12, 5196–5208.

[140]

Shin, D. H.; Bang, C. U.; Kim, J. H.; Han, K. H.; Hong, Y. C.; Uhm, H. S.; Park, D. K.; Kim, K. H. Modification of metal surfaces by microwave plasma at atmospheric pressure. Surf. Coat. Technol. 2007, 201, 4939–4942.

[141]

Ho, G. S.; Faizal, H. M.; Ani, F. N. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria. Waste Manag. 2017, 69, 423–430.

[142]

Saito, G.; Akiyama, T. Nanomaterial synthesis using plasma generation in liquid. J. Nanomater. 2015, 2015, 123696.

[143]

Chen, Q.; Li, J. S.; Li, Y. F. A review of plasma–liquid interactions for nanomaterial synthesis. J. Phys. D: Appl. Phys. 2015, 48, 424005.

[144]

Lin, F. M.; Liu, Y. F.; Li, X. L.; Bai, C. Q. The numerical and experimental investigation of particle size distribution produced by an electrical discharge process. Materials 2021, 14, 287.

[145]

Ofosu, J. A.; Ikeda, Y. Elemental analysis and mixture ratio determination in fine powder metals using microwave-sustained plasma ball spectroscopy. Spectrochim. Acta Part B 2019, 160, 105693.

[146]

Xu, G. Y.; Jiang, H. B.; Stapelberg, M.; Zhou, J. W.; Liu, M. Y.; Li, Q. J.; Cao, Y. T.; Gao, R.; Cai, M. G.; Qiao, J. L. et al. Self-perpetuating carbon foam microwave plasma conversion of hydrocarbon wastes into useful fuels and chemicals. Environ. Sci. Technol. 2021, 55, 6239–6247.

[147]

Hsin, Y. L.; Lin, C. F.; Liang, Y. C.; Hwang, K. C.; Horng, J. C.; Ho, J. A. A.; Lin, C. C.; Hwu, J. R. Microwave arcing induced formation and growth mechanisms of core/shell metal/carbon nanoparticles in organic solutions. Adv. Funct. Mater. 2008, 18, 2048–2056.

[148]

Sun, J.; Wang, Y. C.; Wang, W. L.; Wang, K.; Lu, J. X. Application of featured microwave–metal discharge for the fabrication of well-graphitized carbon-encapsulated Fe nanoparticles for enhancing microwave absorption efficiency. Fuel 2018, 233, 669–676.

[149]

Zhang, H. Y.; Chen, Y. Z.; Tang, K. P.; Lin, Z. H.; Li, X.; Zhang, H. W.; Zhang, Y. F.; Wong, C. H.; Leung, C. W.; Mak, C. L. et al. Microwave heating as a universal method to transform confined molecules into armchair graphene nanoribbons. Nano Res. 2023, 16, 10644–10651.

[150]

De Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.

[151]

Jiang, K.; Wang, Y. H.; Gao, X. L.; Cai, C. Z.; Lin, H. W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216–6220.

[152]

Vázquez, E.; Prato, M. Carbon nanotubes and microwaves: Interactions, responses, and applications. ACS Nano 2009, 3, 3819–3824.

[153]

Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413–1416.

[154]

Lv, Y. T.; Zhou, Y. L.; Wang, W. L.; Sun, J.; Song, Z. L.; Wang, K. VOC degradation by microwave-induced metal discharge and thermal destruction: A comparative study. Waste Dispos. Sustain. Energy 2019, 1, 261–270.

[155]

Takahashi, N. Simple and rapid synthesis of MgO with nano-cube shape by means of a domestic microwave oven. Solid State Sci. 2007, 9, 722–724.

[156]

Takahashi, N. Simple and rapid synthesis of ZnO nano-fiber by means of a domestic microwave oven. Mater. Lett. 2008, 62, 1652–1654.

[157]

Fuenzalida, V. M.; Galvez-Arancibia, D. G.; Olavarria-Contreras, I. J.; Salinger-Basterrica, M. A.; Diaz-Droguett, D. E. Tungsten oxide nanoparticles grown by condensation in gas using domestic appliances. Mater. Lett. 2011, 65, 3061–3063.

[158]

Craciun, D.; Garoi, P.; Mogildea, M.; Mogildea, G.; Zgura, S. I.; Vasile, B. S.; Craciun, V. Crystalline In2O3 nanoparticles synthesis using microwaves vaporization of metallic wires. Appl. Surf. Sci. 2022, 575, 151788.

[159]

Mogildea, M.; Mogildea, G.; Zgura, S. I.; Craciun, D.; Mihăilescu, N.; Prepelita, P.; Mihai, L.; Bazavan, M. C.; Bercu, V.; Gebac, L. C. et al. A new method for tungsten oxide nanopowder deposition on carbon-fiber-reinforced polymer composites for X-ray attenuation. Nanomaterials 2023, 13, 3071.

[160]

Whittaker, A. G.; Mingos, D. M. P. Microwave-assisted solid-state reactions involving metal powders. J. Chem. Soc., Dalton Trans. 1992, 2751–2752

[161]

Vaidhyanathan, B.; Ganguli, M.; Rao, K. J. Fast solid state synthesis of metal vanadates and chalcogenides using microwave irradiation. Mater. Res. Bull. 1995, 30, 1173–1177.

[162]

Landry, C. C.; Barron, A. R. Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation. Science 1993, 260, 1653–1655.

[163]

Kadhim, A.; Hmood, A.; Hassan, H. A. Characterizations of solid-state microwave-synthesized Sb2Te3-based alloys with various compositions of bismuth in Bi2 x Sb2(1− x )Te3. Mater. Sci. Semicond. Process. 2012, 15, 549–554.

[164]

Hmood, A.; Kadhim, A.; Hassan, H. A. Influence of Yb-doping on the thermoelectric properties of Pb1− x Yb x Te alloy synthesized using solid-state microwave. J. Alloys Compd. 2012, 520, 1–6.

[165]

Kadhim, A.; Hmood, A.; Hassan, H. A. Novel hexagonal rods and characterization of Bi0.4Sb1.6Se3 x Te3(1− x ) using solid-state microwave synthesis. Mater. Lett. 2012, 81, 31–33.

[166]

Fan, Z.; Cappelluti, M. D.; Gregory, D. H. Ultrafast, energy-efficient synthesis of intermetallics; Microwave-induced metal plasma (MIMP) synthesis of Mg2Sn. ACS Sustain. Chem. Eng. 2019, 7, 19686–19698.

[167]

Sitthichai, S.; Thongtem, T.; Thongtem, S.; Suriwong, T. One-step synthesis of Zn4Sb3 nanocrystals and Zn4Sb3-ZnSb composites. Superlattices Microstruct. 2013, 64, 433–438.

[168]

Fan, Z.; Baranovas, G.; Yu, H. A.; Szczęsny, R.; Liu, W. R.; Gregory, D. H. Ultra-rapid synthesis of the MgCu2 and Mg2Cu Laves phases and their facile conversion to nanostructured copper with controllable porosity; an energy-efficient, reversible process. Green Chem. 2021, 23, 6936–6944.

[169]

Fan, Z.; Ho, H. N.; Szczęsny, R.; Liu, W. R.; Gregory, D. H. Rapid, energy-efficient and pseudomorphic microwave-induced-metal-plasma (MIMP) synthesis of Mg2Si and Mg2Ge. CrystEngComm 2022, 24, 5801–5809.

[170]

Batanov, G. M.; Borzosekov, V. D.; Golberg, D.; Iskhakova, L. D.; Kolik, L. V.; Konchekov, E. M.; Kharchev, N. K.; Letunov, A. A.; Malakhov, D. V.; Milovich, F. O. et al. Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge. J. Nanophotonics 2016, 10, 012520.

[171]

Jiang, H. Y.; Xian, J. L.; Hu, R.; Mi, S. Y.; Wei, L. Y.; Fang, G. Y.; Wu, Z. A.; Xu, S. Q.; Fan, M. Z.; Liu, K. S. et al. Microwave discharge for rapid introduction of bimetallic-synergistic configuration to conductive catecholate toward long-term supercapacitor. Chem. Eng. J. 2023, 455, 140804.

[172]

Zhou, Y. L.; Wang, W. L.; Sun, J.; Ma, X. L.; Song, Z. L.; Zhao, X. Q.; Mao, Y. P. Direct calorimetry study of metal discharge heating effects induced by microwave irradiation. Appl. Therm. Eng. 2017, 125, 386–393.

[173]

Sugai, H.; Nakamura, K. Recent innovations in microwave probes for reactive plasma diagnostics. Jpn. J. Appl. Phys. 2019, 58, 060101.

[174]

Wu, H. M.; Wang, Z. W.; Liu, C. H.; Xu, J. X.; Cheng, X. B.; Chen, J. Y.; Zhang, X. H. Two enhancements in microwave-assisted spark ignition and their causes. Combust. Flame. 2023, 252, 112744.

[175]
Singh, A.; Sharma, A. K. Temperature profiling of microwave-metal discharge plasma channel using image processing technique. In Proceedings of All India Manufacturing Technology, Design and Research Conference, 2019, pp 219–227.
[176]

Goyal, H. Process intensification using microwave heated multiphase reactors. Chem. Eng. Process. 2022, 178, 109026.

[177]

Wang, K.; Ma, L. K.; Xiong, Q. Y.; Liang, S.; Sun, G. T.; Yu, X.; Yao, Z.; Liu, T. Learning to detect local overheating of the high-power microwave heating process with deep learning. IEEE Access 2018, 6, 10288–10296.

[178]

Li, Y. C.; Dai, B.; Ralchenko, V. G.; Lyu, J. L.; Hao, X. B.; Zhao, J. W.; Zhang, S.; Liu, K.; Han, J. C.; Bolshakov, A. P. et al. Growth of single-crystal diamond by microwave plasma CVD with high precursor utilization using cyclic gas injection and control of carbonaceous species content with optical emission spectroscopy. Vacuum 2022, 206, 111529.

[179]

Jedsukontorn, T.; Ueno, T.; Saito, N.; Hunsom, M. Facile preparation of defective black TiO2 through the solution plasma process: Effect of parametric changes for plasma discharge on its structural and optical properties. J. Alloys Compd. 2017, 726, 567–577.

[180]

Pulsipher, D. J. V.; Martin, I. T.; Fisher, E. R. Controlled nitrogen doping and film colorimetrics in porous TiO2 materials using plasma processing. ACS Appl. Mater. Interfaces 2010, 2, 1743–1753.

Nano Research
Pages 9225-9254
Cite this article:
Xie Y, Shi R, Fu B, et al. A review of microwave–metal discharge interaction: Mechanism, regulation, and application for synthesis of nanomaterials. Nano Research, 2024, 17(10): 9225-9254. https://doi.org/10.1007/s12274-024-6672-8
Topics:
Part of a topical collection:

681

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 February 2024
Revised: 28 March 2024
Accepted: 01 April 2024
Published: 30 May 2024
© Tsinghua University Press 2024
Return