AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A star-like photodetector for angle-based light sensing in 3D space

Qi Pan1Sisi Chen2,3Hongfei Xie2,3Qiling Xu1Meng Su2,3( )Yanlin Song2,3( )
College of Chemistry, Zhengzhou University, Zhengzhou 450051, China
Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

A three-dimensional (3D) star-like photodetector, fabricated using a template assistant printing strategy, achieves light angle detection in 3D space.

Abstract

The development of three-dimensional (3D) space light angle detection is vital in optical technology for applications such as 3D imaging, computer vision, and augmented reality. Current methods involve advanced sensors and algorithms, including time-of-flight cameras, which need multiple cameras and light sources to improve accuracy. However, it is a great challenge to integrate these complex components into compact devices. Subwavelength semiconductor structures offer optical resonance characteristics, enabling precise light–matter interaction regulation. A 3D star-like photodetector, fabricated using a template assistant printing strategy, demonstrates optical resonances of the subwavelength facade and the shielding effect of spatial arrangement. It achieves light angle detection with the resolution of 10° in vertical space and the resolution of 36° in horizontal space, making it a promising prototype for various applications.

Electronic Supplementary Material

Download File(s)
6676_ESM.pdf (493.9 KB)

References

[1]

Yi, L. Y.; Hou, B.; Zhao, H.; Liu, X. G. X-ray-to-visible light-field detection through pixelated colour conversion. Nature 2023, 618, 281–286.

[2]

Li, B. Z.; Lin, Q. X.; Li, M. Frequency-angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 2023, 620, 316–322.

[3]

Rogers, C.; Piggott, A. Y.; Thomson, D. J.; Wiser, R. F.; Opris, I. E.; Fortune, S. A.; Compston, A. J.; Gondarenko, A.; Meng, F. F.; Chen, X. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 2021, 590, 256–261.

[4]

Wu, J. M.; Guo, Y. D.; Deng, C.; Zhang, A. K.; Qiao, H.; Lu, Z.; Xie, J. C.; Fang, L.; Dai, Q. H. An integrated imaging sensor for aberration-corrected 3D photography. Nature 2022, 612, 62–71.

[5]

Xiong, J. H.; Hsiang, E. L.; He, Z. Q.; Zhan, T.; Wu, S. T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light Sci. Appl. 2021, 10, 216.

[6]

Dudek, P.; Richardson, T.; Bose, L.; Carey, S.; Chen, J. N.; Greatwood, C.; Liu, Y. A.; Mayol-Cuevas, W. Sensor-level computer vision with pixel processor arrays for agile robots. Sci. Robot. 2022, 7, eabl7755.

[7]

Kim, I.; Martins, R. J.; Jang, J.; Badloe, T.; Khadir, S.; Jung, H. Y.; Kim, H.; Kim, J.; Genevet, P.; Rho, J. Nanophotonics for light detection and ranging technology. Nat. Nanotech. 2021, 16, 508–524.

[8]

Srivastav, A.; Mandal, S. Radars for autonomous driving: A review of deep learning methods and challenges. IEEE Access 2023, 11, 97147–97168.

[9]

Hu, Z. Y.; Zhang, Y. L.; Pan, C.; Dou, J. Y.; Li, Z. Z.; Tian, Z. N.; Mao, J. W.; Chen, Q. D.; Sun, H. B. Miniature optoelectronic compound eye camera. Nat. Commun. 2022, 13, 5634.

[10]

Horaud, R.; Hansard, M.; Evangelidis, G. Ménier, C. An overview of depth cameras and range scanners based on time-of-flight technologies. Mach. Vis. Appl. 2016, 27, 1005–1020.

[11]

Wu, H. J.; Li, Y. H.; Xu, W. Kong, F. Z.; Zhang, F. Moving event detection from LiDAR point streams. Nat. Commun. 2024, 15, 345.

[12]

Zhan, T.; Yin, K.; Xiong, J. H.; He, Z. Q.; Wu, S. T. Augmented reality and virtual reality displays: Perspectives and challenges. Iscience 2020, 23, 101397.

[13]

Leitis, A.; Tittl, A.; Liu, M. K.; Lee, B. H.; Gu, M. B.; Kivshar, Y. S.; Altug, H. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 2019, 5, eaaw2871.

[14]

Lim, S.; Um, D. S.; Ha, M.; Zhang, Q. P.; Lee, Y.; Lin, Y. J.; Fan, Z. Y.; Ko, H. Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. Nano Res. 2017, 10, 22–36.

[15]

Radwell, N.; Selyem, A.; Mertens, L.; Edgar, M. P.; Padgett, M. J. Hybrid 3D ranging and velocity tracking system combining multi-view cameras and simple LiDAR. Sci. Rep. 2019, 9, 5241.

[16]

Huang, R. Q.; Wu, K. T.; Li, W. J.; Huang, X. Y.; Zhou, S. T.; Jiang, S. W.; Fu, Y.; Zhao, Z. J.; Mai, W. J.; Zhao, C. X. Sunflower-inspired light-tracking system and spatial encryption imaging based on linear flexible perovskite photodetector arrays. Adv. Opt. Mater. 2023, 11, 2301177.

[17]

Xue, Z. G.; Jin, T. Q.; Xu, S. W.; Bai, K.; He, Q.; Zhang, F.; Cheng, X.; Ji, Z. Y.; Pang, W. B.; Shen, Z. M. et al. Assembly of complex 3D structures and electronics on curved surfaces. Sci. Adv. 2022, 8, eabm6922.

[18]

Yang, Y.; Li, C. Y.; Bao, R. Z.; Guo, C. L.; Feng, C. Y.; Cheng, J. L. Multi-angle camera assisted received signal strength algorithm for visible light positioning. J. Lightw. Technol. 2021, 39, 7435–7446.

[19]

Li, J. X.; Gan, T. Y.; Zhao, Y.; Bai, B. J.; Shen, C. Y.; Sun, S. Y.; Jarrahi, M.; Ozcan, A. Unidirectional imaging using deep learning-designed materials. Sci. Adv. 2023, 9, eadg1505.

[20]

Luo, X. G. Subwavelength artificial structures: Opening a new era for engineering optics. Adv. Mater. 2019, 31, 1804680.

[21]

Karnieli, A.; Tsesses, S.; Yu, R. W.; Rivera, N.; Zhao, Z. X.; Arie, A.; Fan, S. H.; Kaminer, I. Quantum sensing of strongly coupled light–matter systems using free electrons. Sci. Adv. 2023, 9, eadd2349.

[22]

Meng, Y.; Chen, Y. Z.; Lu, L. H.; Ding, Y. M.; Cusano, A.; Fan, J. A.; Hu, Q. M.; Wang, K. Y.; Xie, Z. W.; Liu, Z. T. et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 2021, 10, 235.

[23]

Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Choi, J. H.; Bogdanov, A.; Park, H. G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292.

[24]

Pu, M. B.; Ma, X. L.; Li, X.; Guo, Y. H.; Luo, X. G. Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 2017, 5, 4361–4378.

[25]

Cao, L. Y.; White, J. S.; Park, J. S.; Schuller, J. A.; Clemens, B. M.; Brongersma, M. L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009, 8, 643–647.

[26]

Fan, P. Y.; Yu, Z. F.; Fan, S. H.; Brongersma, M. L. Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 2014, 13, 471–475.

[27]

Yi, S.; Zhou, M.; Yu, Z. F.; Fan, P. Y.; Behdad, N.; Lin, D. M.; Wang, K. X.; Fan, S. H.; Brongersma, M. Author Correction: Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 2018, 13, 1191.

[28]

Pan, Q.; Su, M.; Zhang, Z. Y.; Chen, B. D.; Huang, Z. D.; Hu, X. T.; Cai, Z. R.; Song, Y. L. Omnidirectional photodetectors based on spatial resonance asymmetric facade via a 3D self-standing strategy. Adv. Mater. 2020, 32, 1907280.

[29]

Liu, X. F.; Zhang, Q.; Yip, J. N.; Xiong, Q. H.; Sum, T. C. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein–Moss effect. Nano Lett. 2013, 13, 5336–5343.

[30]

Jahani, S.; Jacob.; Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36.

[31]

Lee, W.; Liu, Y.; Lee, Y.; Sharma, B. K.; Shinde, S. M.; Kim, S. D.; Nan, K. W.; Yan, Z.; Han, M. D.; Huang, Y. G. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 2018, 9, 1417.

[32]

Guo, X. G.; Xue, Z. G.; Zhang, Y. H. Manufacturing of 3D multifunctional microelectronic devices: Challenges and opportunities. NPG Asia Mater. 2019, 11, 29.

[33]

Xie, H. F.; Pan, Q.; Wu, D. D.; Qin, F. F.; Chen, S. R.; Sun, W.; Yang, X.; Chen, S. S.; Wu, T. Q.; Chi, J. M. et al. Lateral heterostructured Vis–NIR photodetectors with multimodal detection for rapid and precise classification of Glioma. ACS Nano 2022, 16, 16563–16573.

[34]

Wang, J. Y.; Pan, Q.; Xie, H. F.; Ma, Y.; Su, M.; Chen, B. D.; Wang, H. D.; Xue, T. Y.; Zhang, Z. Y.; Chi, J. M. et al. Printed chalcogenide/metal heterostructured photodetectors for flexible near-infrared sensing. Adv. Opt. Mater. 2022, 10, 2200173.

[35]

Chen, S. S.; Pan, Q.; Wu, T. Q.; Xie, H. F.; Xue, T. Y.; Su, M.; Song, Y. L. Printing nanoparticle-based isotropic/anisotropic networks for directional electrical circuits. Nanoscale 2022, 14, 14956–14961.

[36]

Zhao, W. C.; Zhang, S. Q.; Hou, J. H. Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization. Sci. China Chem. 2016, 59, 1574–1582.

[37]

Neshev, D. N.; Miroshnichenko, A. E. Enabling smart vision with metasurfaces. Nat. Photon. 2023, 17, 26–35.

[38]

Su, M.; Song, Y. L. Printable smart materials and devices: Strategies and applications. Chem. Rev. 2022, 122, 5144–5164.

[39]

Pan, Q.; Chen, S. S.; Su, M.; Li, P. W.; Zhang, Z. Y.; Hu, X. T.; Chen, G. S.; Huang, Z. D.; Chen, B. D.; Chen, S. R. et al. Printed high-density and flexible photodetector arrays via size-matched heterogeneous micro-/nanostructure. Adv. Opt. Mater. 2020, 8, 2000370.

[40]

Sedighi, E.; Zeng, Z. Z.; Sadeghpour, A.; Ji, H. J.; Ju, S.; Bertozzi, A. L. Capillary-driven rise of well-wetting liquid on the outer surface of cylindrical nozzles. Langmuir 2021, 37, 10413–10423.

[41]

Mondal, K.; McMurtrey, M. D. Present status of the functional advanced micro-, nano-printings—A mini review. Mater. Today Chem. 2020, 17, 100328.

[42]

Cheben, P.; Halir, R.; Schmid, J. H.; Atwater, H. A.; Smith, D. R. Subwavelength integrated photonics. Nature 2018, 560, 565–572.

[43]

Liu, H. B.; Wu, C.; Wang, H. J. Real time object detection using LiDAR and camera fusion for autonomous driving. Sci. Rep. 2023, 13, 8056.

[44]

Zhang, C.; Qu, M. L.; Fu, X. Q.; Lin, J. Review on microscale sensors with 3D engineered structures: Fabrication and applications. Small Methods 2022, 6, 2101384.

[45]

Zhang, L.; Lin, B. J.; Hu, B.; Xu, X. B.; Ma, W. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability. Adv. Mater. 2018, 30, 1800343.

Nano Research
Pages 7567-7573
Cite this article:
Pan Q, Chen S, Xie H, et al. A star-like photodetector for angle-based light sensing in 3D space. Nano Research, 2024, 17(8): 7567-7573. https://doi.org/10.1007/s12274-024-6676-4
Topics:

400

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 February 2024
Revised: 01 April 2024
Accepted: 01 April 2024
Published: 03 July 2024
© Tsinghua University Press 2024
Return