Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ocean wave energy is a significant and promising source of renewable energy. However, the energy harvesting is challenging due to the multi-directional nature of waves. This paper proposes a magnetic-field-assisted triboelectric nanogenerator (MFA-TENG) for harvesting multi-directional wave energy. By incorporating a magnetic field, the planar motion of the pendulum is converted into spatial motion, increasing the triggering of multilayered TENG (M-TENG) and enhancing the output energy of the MFA-TENG. Experimental results demonstrate that the output energy of the MFA-TENG is increased by 73% by utilizing the magnetic field. Moreover, a spring model based on the origami-structured M-TENG is established to analyze the effect of different equivalent stiffnesses on the performance of the M-TENG, aiming to obtain optimal output performance. The results showcase the impressive output performance of the M-TENG, generating outputs of 250 V, 18 μA, and 255 nC. Furthermore, the proposed MFA-TENG effectively harvests multi-directional wave energy under water-wave driven conditions. This study significantly enhances the ability of the MFA-TENG to harvest multi-directional wave energy and presents a promising approach for self-powered marine monitoring in the future.
Borthwick, A. G. L. Marine renewable energy seascape. Engineering 2016, 2, 69–78.
He, F.; Liu, Y. B.; Pan, J. P.; Ye, X. H.; Jiao, P. C. Advanced ocean wave energy harvesting: Current progress and future trends. J. Zhejiang Univ. Sci. A 2023, 24, 91–108.
Val, D. V. Reliability of marine energy converters. Energies 2023, 16, 3387.
Rusu, E. Special issue “advances and challenges in harvesting ocean energy”. Energies 2021, 14, 4543.
Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604.
Khan, M. Z. A.; Khan, H. A.; Aziz, M. Harvesting energy from ocean: Technologies and perspectives. Energies 2022, 15, 3456.
Pan, X. G.; Ling, P.; Bao, H. H.; He, W.; Li, Q. C.; Yan, B. Tumbler-inspired electromagnetic generator for low-frequency ocean wave energy harvesting. Energy Convers. Manage. 2023, 294, 117569.
Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.
Dharmasena, R. D. I. G.; Jayawardena, K. D. G. I.; Mills, C. A.; Deane, J. H. B.; Anguita, J. V.; Dorey, R. A.; Silva, S. R. P. Triboelectric nanogenerators: Providing a fundamental framework. Energy Environ. Sci. 2017, 10, 1801–1811.
Chen, Y. R.; Zhang, H.; Xu, C. H.; Deng, L.; Yang, Q. L.; Zhang, H. T.; Xing, J. C.; Xie, L. Q. Characteristic of solid-ferrofluid triboelectric nanogenerator for ultra-low-frequency vibration energy harvesting. Nano Energy 2023, 111, 108395.
Cao, Y. X.; Su, E. M.; Sun, Y. S.; Wang, Z. L.; Cao, L. N. Y. A rolling-bead triboelectric nanogenerator for harvesting omnidirectional wind-induced energy toward shelter forests monitoring. Small 2024, 20, 2307119.
Feng, L. N.; Cao, X.; Wang, Z. L.; Zhang, L. Q. A transparent and degradable bacterial cellulose-based film for triboelectric nanogenerator: Efficient biomechanical energy harvesting and human health monitoring. Nano Energy 2024, 120, 109068.
Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.
Lei, H.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.
Xiong, X. Y.; Liang, J.; Wu, W. Principle and recent progress of triboelectric pressure sensors for wearable applications. Nano Energy 2023, 113, 108542.
Kim, M. P. Multilayered functional triboelectric polymers for self-powered wearable applications: A review. Micromachines 2023, 14, 1640.
Khandelwal, G.; Maria Joseph Raj, N. P.; Kim, S. J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 2020, 33, 100882.
Shen, F.; Li, Z. J.; Guo, H. H.; Yang, Z. B.; Wu, H.; Wang, M.; Luo, J.; Xie, S. R.; Peng, Y.; Pu, H. Y. Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Elect. Mater. 2021, 7, 2100277.
Zhang, C. G.; Hao, Y. J.; Yang, J. Y.; Su, W.; Zhang, H. K.; Wang, J.; Wang, Z. L.; Li, X. H. Recent advances in triboelectric nanogenerators for marine exploitation. Adv. Energy Mater. 2023, 13, 2300387.
Jiang, T.; Yao, Y. Y.; Xu, L.; Zhang, L. M.; Xiao, T. X.; Wang, Z. L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 2017, 31, 560–567.
Lei, R.; Zhai, H.; Nie, J. H.; Zhong, W.; Bai, Y.; Liang, X.; Xu, L.; Jiang, T.; Chen, X. Y.; Wang, Z. L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 2019, 4, 1800514.
Xiao, T. X.; Liang, X.; Jiang, T.; Xu, L.; Shao, J. J.; Nie, J. H.; Bai, Y.; Zhong, W.; Wang, Z. L. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 2018, 28, 1802634.
Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.
Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.
Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.
Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.
Xia, K.; Xu, Z.; Hong, Y.; Wang, L. A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 2023, 24, 100467.
Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.
Ren, Z. W.; Liang, X.; Liu, D.; Li, X. J.; Ping, J. F.; Wang, Z. M.; Wang, Z. L. Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 2021, 11, 2101116.
Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.
Wen, H. G.; Yang, P. Y.; Liu, G. L.; Xu, S. X.; Yao, H. L.; Li, W. T.; Qu, H.; Ding, J. J.; Li, J. Y.; Wan, L. Y. Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 2022, 93, 106796.
Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.
Lin, Z. M.; Zhang, B. B.; Xie, Y. Y.; Wu, Z. Y.; Yang, J.; Wang, Z. L. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 2021, 31, 2105237.
Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, O.; Liu, Y. B.; He, L. X.; Wang, J.; Wang, Z. L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2111775.
Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, J. Y.; Hu, Y. X.; He, L. X.; Zhao, X. J.; Li, X. H.; Wang, Z. L.; Wang, J. A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting. Small 2023, 19, 2304412.
Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.
Sun, Y. G.; Zheng, F. Y.; Wei, X. L.; Shi, Y. P.; Li, R. N.; Wang, B. C.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Appl. Mater. Interfaces 2022, 14, 15187–15194.
Wang, T. Pendulum-based vibration energy harvesting: Mechanisms, transducer integration, and applications. Energy Convers. Manage. 2023, 276, 116469.