AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetic-field-assisted triboelectric nanogenerator for harvesting multi-directional wave energy

Mengru Ding1,2,§Jianlong Wang1,2,§Da Zhao1Hengyu Li1,2,3Xiaojun Cheng1,2,3Jianming Wen4 ( )Zhong Lin Wang1,3,5 ( )Tinghai Cheng1,2,3 ( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Guangzhou Institute of Blue Energy, Guangzhou 510555, China
College of Engineering, Zhejiang Normal University, Jinhua 321004, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

§ Mengru Ding and Jianlong Wang contributed equally to this work.

Show Author Information

Graphical Abstract

This paper proposes a magnetic-field-assisted triboelectric nanogenerator (MFA-TENG) for harvesting multi-directional wave energy. By incorporating a magnetic field, the planar motion of the pendulum is converted into spatial motion, enhancing the output energy of the MFA-TENG.

Abstract

Ocean wave energy is a significant and promising source of renewable energy. However, the energy harvesting is challenging due to the multi-directional nature of waves. This paper proposes a magnetic-field-assisted triboelectric nanogenerator (MFA-TENG) for harvesting multi-directional wave energy. By incorporating a magnetic field, the planar motion of the pendulum is converted into spatial motion, increasing the triggering of multilayered TENG (M-TENG) and enhancing the output energy of the MFA-TENG. Experimental results demonstrate that the output energy of the MFA-TENG is increased by 73% by utilizing the magnetic field. Moreover, a spring model based on the origami-structured M-TENG is established to analyze the effect of different equivalent stiffnesses on the performance of the M-TENG, aiming to obtain optimal output performance. The results showcase the impressive output performance of the M-TENG, generating outputs of 250 V, 18 μA, and 255 nC. Furthermore, the proposed MFA-TENG effectively harvests multi-directional wave energy under water-wave driven conditions. This study significantly enhances the ability of the MFA-TENG to harvest multi-directional wave energy and presents a promising approach for self-powered marine monitoring in the future.

Electronic Supplementary Material

Video
6680_ESM2.mp4
6680_ESM3.mp4
6680_ESM4.mp4
6680_ESM5.mp4
6680_ESM6.mp4
Download File(s)
6680_ESM1.pdf (2.3 MB)

References

[1]

Borthwick, A. G. L. Marine renewable energy seascape. Engineering 2016, 2, 69–78.

[2]

He, F.; Liu, Y. B.; Pan, J. P.; Ye, X. H.; Jiao, P. C. Advanced ocean wave energy harvesting: Current progress and future trends. J. Zhejiang Univ. Sci. A 2023, 24, 91–108.

[3]

Val, D. V. Reliability of marine energy converters. Energies 2023, 16, 3387.

[4]

Rusu, E. Special issue “advances and challenges in harvesting ocean energy”. Energies 2021, 14, 4543.

[5]

Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604.

[6]

Khan, M. Z. A.; Khan, H. A.; Aziz, M. Harvesting energy from ocean: Technologies and perspectives. Energies 2022, 15, 3456.

[7]

Pan, X. G.; Ling, P.; Bao, H. H.; He, W.; Li, Q. C.; Yan, B. Tumbler-inspired electromagnetic generator for low-frequency ocean wave energy harvesting. Energy Convers. Manage. 2023, 294, 117569.

[8]

Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

[9]

Dharmasena, R. D. I. G.; Jayawardena, K. D. G. I.; Mills, C. A.; Deane, J. H. B.; Anguita, J. V.; Dorey, R. A.; Silva, S. R. P. Triboelectric nanogenerators: Providing a fundamental framework. Energy Environ. Sci. 2017, 10, 1801–1811.

[10]

Chen, Y. R.; Zhang, H.; Xu, C. H.; Deng, L.; Yang, Q. L.; Zhang, H. T.; Xing, J. C.; Xie, L. Q. Characteristic of solid-ferrofluid triboelectric nanogenerator for ultra-low-frequency vibration energy harvesting. Nano Energy 2023, 111, 108395.

[11]

Cao, Y. X.; Su, E. M.; Sun, Y. S.; Wang, Z. L.; Cao, L. N. Y. A rolling-bead triboelectric nanogenerator for harvesting omnidirectional wind-induced energy toward shelter forests monitoring. Small 2024, 20, 2307119.

[12]
Xu, Z. Q.; Chen, L. T.; Zhang, Z.; Han, J. J.; Chen, P. F.; Hong, Z. Y.; Jiang, T.; Wang, Z. L. Durable roller-based swing-structured triboelectric nanogenerator for water wave energy harvesting. Small, in press, https://doi.org/10.1002/smll.202307288.
[13]

Feng, L. N.; Cao, X.; Wang, Z. L.; Zhang, L. Q. A transparent and degradable bacterial cellulose-based film for triboelectric nanogenerator: Efficient biomechanical energy harvesting and human health monitoring. Nano Energy 2024, 120, 109068.

[14]

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

[15]

Lei, H.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

[16]

Xiong, X. Y.; Liang, J.; Wu, W. Principle and recent progress of triboelectric pressure sensors for wearable applications. Nano Energy 2023, 113, 108542.

[17]

Kim, M. P. Multilayered functional triboelectric polymers for self-powered wearable applications: A review. Micromachines 2023, 14, 1640.

[18]

Khandelwal, G.; Maria Joseph Raj, N. P.; Kim, S. J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 2020, 33, 100882.

[19]

Shen, F.; Li, Z. J.; Guo, H. H.; Yang, Z. B.; Wu, H.; Wang, M.; Luo, J.; Xie, S. R.; Peng, Y.; Pu, H. Y. Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Elect. Mater. 2021, 7, 2100277.

[20]

Zhang, C. G.; Hao, Y. J.; Yang, J. Y.; Su, W.; Zhang, H. K.; Wang, J.; Wang, Z. L.; Li, X. H. Recent advances in triboelectric nanogenerators for marine exploitation. Adv. Energy Mater. 2023, 13, 2300387.

[21]

Jiang, T.; Yao, Y. Y.; Xu, L.; Zhang, L. M.; Xiao, T. X.; Wang, Z. L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 2017, 31, 560–567.

[22]

Lei, R.; Zhai, H.; Nie, J. H.; Zhong, W.; Bai, Y.; Liang, X.; Xu, L.; Jiang, T.; Chen, X. Y.; Wang, Z. L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 2019, 4, 1800514.

[23]

Xiao, T. X.; Liang, X.; Jiang, T.; Xu, L.; Shao, J. J.; Nie, J. H.; Bai, Y.; Zhong, W.; Wang, Z. L. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 2018, 28, 1802634.

[24]

Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

[25]

Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

[26]

Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

[27]

Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

[28]

Xia, K.; Xu, Z.; Hong, Y.; Wang, L. A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 2023, 24, 100467.

[29]

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

[30]

Ren, Z. W.; Liang, X.; Liu, D.; Li, X. J.; Ping, J. F.; Wang, Z. M.; Wang, Z. L. Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 2021, 11, 2101116.

[31]

Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.

[32]

Wen, H. G.; Yang, P. Y.; Liu, G. L.; Xu, S. X.; Yao, H. L.; Li, W. T.; Qu, H.; Ding, J. J.; Li, J. Y.; Wan, L. Y. Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 2022, 93, 106796.

[33]

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

[34]

Lin, Z. M.; Zhang, B. B.; Xie, Y. Y.; Wu, Z. Y.; Yang, J.; Wang, Z. L. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 2021, 31, 2105237.

[35]

Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, O.; Liu, Y. B.; He, L. X.; Wang, J.; Wang, Z. L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2111775.

[36]

Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, J. Y.; Hu, Y. X.; He, L. X.; Zhao, X. J.; Li, X. H.; Wang, Z. L.; Wang, J. A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting. Small 2023, 19, 2304412.

[37]

Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.

[38]

Sun, Y. G.; Zheng, F. Y.; Wei, X. L.; Shi, Y. P.; Li, R. N.; Wang, B. C.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Appl. Mater. Interfaces 2022, 14, 15187–15194.

[39]

Wang, T. Pendulum-based vibration energy harvesting: Mechanisms, transducer integration, and applications. Energy Convers. Manage. 2023, 276, 116469.

Nano Research
Pages 7144-7152
Cite this article:
Ding M, Wang J, Zhao D, et al. Magnetic-field-assisted triboelectric nanogenerator for harvesting multi-directional wave energy. Nano Research, 2024, 17(8): 7144-7152. https://doi.org/10.1007/s12274-024-6680-8
Topics:

610

Views

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 22 February 2024
Revised: 26 March 2024
Accepted: 02 April 2024
Published: 02 May 2024
© Tsinghua University Press 2024
Return