Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lithium-sulfur (Li-S) batteries mainly rely on the reversible electrochemical reaction of between lithium ions (Li+) and sulfur species to achieve energy storage and conversion, therefore, increasing the number of free Li+ and improving the Li+ diffusion kinetics will effectively enhance the cell performance. Here, Mo-based MXene heterostructure (MoS2@Mo2C) was developed by partial vulcanization of Mo2C MXene, in which the introduction of similar valence S into Mo-based MXene (Mo2C) can create an electron delocalization effect. Through theoretical simulations and electrochemical characterisation, it is demonstrated that the MoS2@Mo2C heterojunction can effectively promote ion desolvation, increase the amount of free Li+, and accelerate Li+ transport for more efficient polysulfide conversion. In addition, the MoS2@Mo2C material is also capable of accelerating the oxidation and reduction of polysulfides through its sufficient defects and vacancies to further enhance the catalytic efficiency. Consequently, the Li-S battery with the designed MoS2@Mo2C electrocatalyst performed for 500 cycles at 1 C and still maintained the ideal capacity (664.7 mAh·g−1), and excellent rate performance (567.6 mAh·g−1 at 5 C). Under the extreme conditions of high loading, the cell maintained an excellent capacity of 775.6 mAh·g−1 after 100 cycles. It also retained 838.4 mAh·g−1 for 70 cycles at a low temperature of 0 °C, and demonstrated a low decay rate (0.063%). These results indicate that the delocalized electrons effectively accelerate the catalytic conversion of lithium polysulfide, which is more practical for enhancing the behaviour of Li-S batteries.
Wang, J. N.; Wang, H. L.; Jia, S. Y.; Zhao, Q.; Zheng, Q.; Ma, Y. L.; Ma, T. Y.; Li, X. Recent advances in inhibiting shuttle effect of polysulfide in lithium-sulfur batteries. J. Energy Storage 2023, 72, 108372.
Gu, H. F.; Yue, W. C.; Hu, J. Q.; Niu, X. F.; Tang, H.; Qin, F. J.; Li, Y.; Yan, Q.; Liu, X. M.; Xu, W. J. et al. Asymmetrically coordinated Cu-N1C2 single-atom catalyst immobilized on Ti3C2T x MXene as separator coating for lithium-sulfur batteries. Adv. Energy Mater. 2023, 13, 2204014.
Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.
Yao, W. Q.; Xu, J.; Ma, L. B.; Lu, X. M.; Luo, D.; Qian, J.; Zhan, L.; Manke, I.; Yang, C.; Adelhelm, P. et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries. Adv. Mater. 2023, 35, 2212116.
Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state eelectrolytes. Adv. Energy Mater. 2023, 13, 2203540.
Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.
Ruan, J. F.; Sun, H.; Song, Y.; Pang, Y. P.; Yang, J. H.; Sun, D. L.; Zheng, S. Y. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater. 2021, 1, 100018.
Dong, F.; Peng, C. X.; Xu, H. Y.; Zheng, Y. X.; Yao, H. F.; Yang, J. H.; Zheng, S. Y. Lithiated sulfur-incorporated, polymeric cathode for durable lithium-sulfur batteries with promoted redox kinetics. ACS Nano 2021, 15, 20287–20299.
Zhang, J. H.; Zheng, S. N.; Sun, D. L.; Li, J. D.; Liu, G. H. Graphene-wrapped microspheres decorated with nanoparticles as efficient cathode material for lithium-sulfur battery. J. Electroanal. Chem. 2021, 902, 115810.
Liu, G.; Sun, Q. J.; Li, Q.; Zhang, J. L.; Ming, J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges. Energy Fuels 2021, 35, 10405–10427.
Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In- situ embedding CoTe catalyst into 1D-2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982.
Deng, R. Y.; Wang, M.; Yu, H. Y.; Luo, S. R.; Li, J. H.; Chu, F. L.; Liu, B.; Wu, F. X. Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities. Energy Environ. Mater. 2022, 5, 777–799.
Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.
Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.
Du, Z. G.; Wu, C.; Chen, Y. C.; Zhu, Q.; Cui, Y. L. S.; Wang, H. Y.; Zhang, Y. Z.; Chen, X.; Shang, J. X.; Li, B. et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228.
Wang, Z. R.; Zhang, Y. C.; Jiang, H. Y.; Wei, C. L.; An, Y. L.; Tan, L. W.; Xiong, S. L.; Feng, J. K. Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Res. 2023, 16, 458–465.
Wu, S. Y.; Li, X.; Zhang, Y. Z.; Guan, Q. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, J. T.; Wang, Y. L.; Zhan, L. et al. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 2023, 16, 9158–9178.
Du, Z. G.; Guo, Y.; Wang, H. Y.; Gu, J. N.; Zhang, Y. Z.; Cheng, Z. J.; Li, B.; Li, S. M.; Yang, S. B. High-throughput production of 1T MoS2 monolayers based on controllable conversion of Mo-based MXenes. ACS Nano 2021, 15, 19275–19283.
Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.
Yuan, T.; Sun, Y. Y.; Li, S. Q.; Che, H. Y.; Zheng, Q. F.; Ni, Y. J.; Zhang, Y. X.; Zou, J.; Zang, X. X.; Wei, S. H. et al. Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration. Nano Res. 2023, 16, 6890–6902.
Yuan, T.; Li, S. Q.; Sun, Y. Y.; Wang, J. H.; Chen, A. J.; Zheng, Q. F.; Zhang, Y. X.; Chen, L. W.; Nam, G.; Che, H. Y. et al. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano 2022, 16, 18058–18070.
Wang, W. P.; Zhang, J.; Chou, J.; Yin, Y. X.; You, Y.; Xin, S.; Guo, Y. G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.
Li, G. R.; Qiu, W. L.; Gao, W. J.; Zhu, Y. J.; Zhang, X. M.; Li, H. Y.; Zhang, Y. G.; Wang, X.; Chen, Z. W. Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a Bi-service matrix for superior lithium-sulfur electrochemistry. Adv. Funct. Mater. 2022, 32, 2202853.
Wang, J.; Li, L. G.; Hu, H. M.; Hu, H. F.; Guan, Q. H.; Huang, M.; Jia, L. J.; Adenusi, H.; Tian, K. V.; Zhang, J. et al. Toward dendrite-free metallic lithium anodes: From structural design to optimal electrochemical diffusion kinetics. ACS Nano 2022, 16, 17729–17760.
Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.
Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.
Amine, R.; Liu, J. Z.; Acznik, I.; Sheng, T.; Lota, K.; Sun, H.; Sun, C. J.; Fic, K.; Zuo, X. B.; Ren, Y. et al. Regulating the hidden solvation-ion-exchange in concentrated electrolytes for stable and safe lithium metal batteries. Adv. Energy Mater. 2020, 10, 2000901.
Liu, J.; Zhou, Y. H.; Yan, T. Y.; Gao, X. P. Perspectives of high-performance Li-S battery electrolytes. Adv. Funct. Mater. 2024, 34, 2309625.
Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.
Zhao, Z. Q.; Pan, Y. K.; Yi, S.; Su, Z.; Chen, H. L.; Huang, Y. N.; Niu, B.; Long, D. H.; Zhang, Y. Y. Enhanced electron delocalization within coherent nano-heterocrystal ensembles for optimizing polysulfide conversion in high-energy-density Li-S batteries. Adv. Mater. 2024, 36, 2310052.
Jia, L. J.; Hu, H. F.; Cheng, X. M.; Dong, H.; Li, H. H.; Zhang, Y. Z.; Zhang, H.; Zhao, X. Y.; Li, C. H.; Zhang, J. et al. Toward low-temperature Zinc-ion batteries: Strategy, progress, and prospect in vanadium-based cathodes. Adv. Energy Mater. 2024, 14, 2304010.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
Li, X.; Zuo, Y. Z.; Zhang, Y. Z.; Wang, J.; Wang, Y. L.; Yu, H. M.; Zhan, L.; Ling, L. C.; Du, Z. G.; Yang, S. B. Controllable sulfurization of MXenes to in-plane multi-heterostructures for efficient sulfur redox kinetics. Adv. Energy Mater. 2024, 14, 2303389.
Zhu, Q.; Xu, H. F.; Shen, K.; Zhang, Y. Z.; Li, B.; Yang, S. B. Efficient polysulfides conversion on Mo2CT x MXene for high-performance lithium-sulfur batteries. Rare Met. 2022, 41, 311–318.
Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.
Benchakar, M.; Natu, V.; Elmelegy, T. A.; Sokol, M.; Snyder, J.; Comminges, C.; Morais, C.; Célérier, S.; Habrioux, A.; Barsoum, M. W. On a two-dimensional MoS2/Mo2CT x hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CT x MXene. J. Electrochem. Soc. 2020, 167, 124507.
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.
Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.
Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2T x MXene. Chem. Mater. 2020, 32, 3480–3488.
Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127.
Yan, Y. Y.; Li, H. T.; Cheng, C.; Yan, T. R.; Gao, W. P.; Mao, J.; Dai, K. H.; Zhang, L. Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride. J. Energy Chem. 2021, 61, 336–346.
Xiao, Y. Y.; Liu, Y. T.; Qin, G. H.; Han, P. Y.; Guo, X. Y.; Cao, S. X.; Liu, F. S. Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Compos. Part B: Eng. 2020, 193, 108004.
He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.
Chen, P.; Wang, T. Y.; He, D.; Shi, T.; Chen, M. F.; Fang, K.; Lin, H. Z.; Wang, J.; Wang, C. Y.; Pang, H. Delocalized isoelectronic heterostructured FeCoO x S y catalysts with tunable electron density for accelerated sulfur redox kinetics in Li-S batteries. Angew. Chem., Int. Ed. 2023, 62, e202311693.
Zhu, Z.; Zeng, Y. X.; Pei, Z. H.; Luan, D. Y.; Wang, X.; Lou, X. W. Bimetal-organic framework nanoboxes enable accelerated redox kinetics and polysulfide trapping for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2023, 62, e202305828.
Wang, H. L.; Zhou, Y. M.; Tao, S. Y. CoP-CoOOH heterojunction with modulating interfacial electronic structure: A robust biomass-upgrading electrocatalyst. Appl. Catal. B: Environ. 2022, 315, 121588.
Xia, H. C.; Zan, L. X.; Yuan, P. F.; Qu, G.; Dong, H. L.; Wei, Y. F.; Yu, Y.; Wei, Z. Y.; Yan, W. F.; Hu, J. S. et al. Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe-N x towards enhanced sodium ion storage. Angew. Chem., Int. Ed. 2023, 62, e202218282.
Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3− x /MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2022, 12, 2103022.
Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.
Yao, W. Q.; Tian, C. X.; Yang, C.; Xu, J.; Meng, Y. F.; Manke, I.; Chen, N.; Wu, Z. L.; Zhan, L.; Wang, Y. L. et al. P-doped NiTe2 with Te-Vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 2022, 34, 2106370.
Henderson, W. A.; Seo, D. M.; Han, S. D.; Borodin, O. Electrolyte solvation and ionic association. VII. Correlating Raman spectroscopic data with solvate species. J. Electrochem. Soc. 2020, 167, 110551.
Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.
Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.
Hou, L. P.; Li, Z.; Yao, N.; Bi, C. X.; Li, B. Q.; Chen, X.; Zhang, X. Q.; Zhang, Q. Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium-sulfur batteries. Adv. Mater. 2022, 34, 2205284.
Xu, J.; Yu, F. T.; Hua, J. L.; Tang, W. Q.; Yang, C.; Hu, S. Z.; Zhao, S. L.; Zhang, X. S.; Xin, Z.; Niu, D. F. Donor dominated triazine-based microporous polymer as a polysulfide immobilizer and catalyst for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 392, 123694.
Wang, Y. L.; Song, J.; Wong, W. Y. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous Zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202218343.
Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.
Zhou, C.; Hong, M.; Hu, N. T.; Yang, J. H.; Zhu, W. H.; Kong, L. W.; Li, M. Bi-metallic coupling-induced electronic-state modulation of metal phosphides for kinetics-enhanced and dendrite-free Li-S batteries. Adv. Funct. Mater. 2023, 33, 2213310.
Zhang, L.; Qian, T.; Zhu, X. Y.; Hu, Z. L.; Wang, M. F.; Zhang, L. Y.; Jiang, T.; Tian, J. H.; Yan, C. L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries. Chem. Soc. Rev. 2019, 48, 5432–5453.
Yao, W. Q.; Xu, J.; Cao, Y. J.; Meng, Y. F.; Wu, Z. L.; Zhan, L.; Wang, Y. L.; Zhang, Y. L.; Manke, I.; Chen, N. et al. Dynamic intercalation-conversion site supported ultrathin 2D mesoporous SnO2/SnSe2 hybrid as bifunctional polysulfide immobilizer and lithium regulator for lithium-sulfur chemistry. ACS Nano 2022, 16, 10783–10797.
Luo, D.; Li, C. J.; Zhang, Y. G.; Ma, Q. Y.; Ma, C. Y.; Nie, Y. H.; Li, M.; Weng, X. F.; Huang, R.; Zhao, Y. et al. Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2022, 34, 2105541.
Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.