AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Naked-eye visualization of lymph nodes using fluorescence nanoprobes in non-human primate-animal models

Xiaoyuan Ji1,2,§Binbin Chu1,§Xiaofeng Wu4,§Zhiming Xia3,5,§Airui Jiang1Chenyu Wang1Zhiming Chen4Danni Zhong3,5Qiaolin Wei6Bin Song1Wanlin Li5Yiling Zhong1Houyu Wang1Fenglin Dong4( )Min Zhou3,5( )Yao He1,7,8( )
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining 314400, China
Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310027, China
School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
Macao Translational Medicine Center, Macau University of Science and Technology, Taipa 999078, Macau, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau, China

§ Xiaoyuan Ji, Binbin Chu, Xiaofeng Wu, and Zhiming Xia contributed equally to this work.

Show Author Information

Graphical Abstract

We herein present a pioneering demonstration of nanomaterials based optical imaging-guided surgical operation by using macaques as non-human primate-animal models. Typically, taking advantages of strong and stable fluorescence of small-sized (diameter: ~ 5 nm) silicon-based nanoparticles (SiNPs), lymphatic drainage patterns can be vividly visualized in a real-time manner, and lymph nodes (LNs) are able to be sensitively detected and precisely excised from small animal models (e.g., rats and rabbits) to non-human primate animal models (e.g., cynomolgus macaque (Macaca fascicularis) and rhesus macaque (Macaca mulatta)).

Abstract

Despite sufficient studies performed in non-primate animal models, there exists scanty information obtained from pilot trials in non-human primate animal models, severely hindering nanomaterials moving from basic research into clinical practice. We herein present a pioneering demonstration of nanomaterials based optical imaging-guided surgical operation by using macaques as a typical kind of non-human primate-animal models. Typically, taking advantages of strong and stable fluorescence of the small-sized (diameter: ~ 5 nm) silicon-based nanoparticles (SiNPs), lymphatic drainage patterns can be vividly visualized in a real-time manner, and lymph nodes (LN) are able to be sensitively detected and precisely excised from small animal models (e.g., rats and rabbits) to non-human primate animal models (e.g., cynomolgus macaque (Macaca fascicularis) and rhesus macaque (Macaca mulatta)). Compared to clinically used invisible near-infrared (NIR) lymphatic tracers (i.e., indocyanine green (ICG); etc.), we fully indicate that the SiNPs feature unique advantages for naked-eye visible fluorescence-guided surgical operation in long-term manners. Thorough toxicological analysis in macaque models further provides confirming evidence of favorable biocompatibility of the SiNPs probes. We expect that our findings would facilitate the translation of nanomaterials from the laboratory to the clinic, especially in the field of cancer treatment.

Electronic Supplementary Material

Video
6683_ESM2.avi
6683_ESM3.avi
6683_ESM4.avi
6683_ESM5.mp4
6683_ESM6.mp4
Download File(s)
6683_ESM1.pdf (1.6 MB)

References

[1]

Liang, S.; Yao, J. J.; Liu, D.; Rao, L.; Chen, X. Y.; Wang, Z. H. Harnessing nanomaterials for cancer sonodynamic immunotherapy. Adv. Mater. 2023, 35, 2211130.

[2]

Shi, Y. X.; Su, W.; Yuan, F. L.; Yuan, T.; Song, X. Z.; Han, Y. Y.; Wei, S. Y.; Zhang, Y.; Li, Y. C.; Li, X. H. et al. Carbon dots for electroluminescent light-emitting diodes: Recent progress and future prospects. Adv. Mater. 2023, 35, 2210699.

[3]

Semeniak, D.; Cruz, D. F.; Chilkoti, A.; Mikkelsen, M. H. Plasmonic fluorescence enhancement in diagnostics for clinical tests at point-of-care: A review of recent technologies. Adv. Mater. 2023, 35, 2107986.

[4]

Qiu, X. C.; Zhu, X. J.; Su, X. L.; Xu, M.; Yuan, W.; Liu, Q. Y.; Xue, M.; Liu, Y. W.; Feng, W.; Li, F. Y. Near-infrared upconversion luminescence and bioimaging in vivo based on quantum dots. Adv. Sci. (Weinh.) 2019, 6, 1801834.

[5]

Chu, B. B.; Wang, H. Y.; He, Y. Fluorescent silicon-based nanomaterials imaging technology in diseases. Chem. Res. Chin. Univ. 2021, 37, 880–888.

[6]

Sun, R.; Liu, M. Z.; Lu, J. P.; Chu, B. B.; Yang, Y. M.; Song, B.; Wang, H. Y.; He, Y. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat. Commun. 2022, 13, 5127.

[7]

Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

[8]

Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

[9]

Loh, K. P.; Ho, D.; Chiu, G. N. C.; Leong, D. T.; Pastorin, G.; Chow, E. K. H. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv. Mater. 2018, 30, 1802368.

[10]

Chen, Y.; Wang, S. F.; Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 2023, 1, 60–78.

[11]

Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.

[12]

Pei, P.; Chen, Y.; Sun, C. X.; Fan, Y.; Yang, Y. M.; Liu, X.; Lu, L. F.; Zhao, M. Y.; Zhang, H. X.; Zhao, D. Y. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018.

[13]

Wang, T.; Wang, S. F.; Liu, Z. Y.; He, Z. Y.; Yu, P.; Zhao, M. Y.; Zhang, H. X.; Lu, L. F.; Wang, Z. X.; Wang, Z. Y. et al. A hybrid erbium (III)-bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nat. Mater. 2021, 20, 1571–1578.

[14]

Yang, Y. W.; Chen, Y.; Pei, P.; Fan, Y.; Wang, S. F.; Zhang, H. X.; Zhao, D. Y.; Qian, B. Z.; Zhang, F. Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging. Nat. Nanotechnol. 2023, 18, 1195–1204.

[15]

Weissleder, R. Molecular imaging in cancer. Science 2006, 312, 1168–1171.

[16]

Liu, J.; Chen, C.; Ji, S. L.; Liu, Q.; Ding, D.; Zhao, D.; Liu, B. Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chem. Sci. 2017, 8, 2782–2789.

[17]

Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242.

[18]

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

[19]

Toh, U.; Iwakuma, N.; Mishima, M.; Okabe, M.; Nakagawa, S.; Akagi, Y. Navigation surgery for intraoperative sentinel lymph node detection using indocyanine green (ICG) fluorescence real-time imaging in breast cancer. Breast Cancer Res. Treat. 2015, 153, 337–344.

[20]

De Gooyer, J. M.; Elekonawo, F. M. K.; Bremers, A. J. A.; Boerman, O. C.; Aarntzen, E. H. J. G.; De Reuver, P. R.; Nagtegaal, I. D.; Rijpkema, M.; De Wilt, J. H. W. Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgery for peritoneal metastases of colorectal origin. Nat. Commun. 2022, 13, 2621.

[21]

Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V.; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.

[22]

Ioannidis, J. P. A.; Kim, B. Y. S.; Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2018, 2, 797–809.

[23]

Dawidczyk, C. M.; Russell, L. M.; Searson, P. C. Recommendations for benchmarking preclinical studies of nanomedicines. Cancer Res. 2015, 75, 4016–4020.

[24]

Yong, K. T.; Law, W. C.; Hu, R.; Ye, L.; Liu, L. W.; Swihart, M. T.; Prasad, P. N. Nanotoxicity assessment of quantum dots: From cellular to primate studies. Chem. Soc. Rev. 2013, 42, 1236–1250.

[25]

Stead, S. O.; Kireta, S.; McInnes, S. J. P.; Kette, F. D.; Sivanathan, K. N.; Kim, J.; Cueto-Diaz, E. J.; Cunin, F.; Durand, J. O.; Drogemuller, C. J. et al. Murine and non-human primate dendritic cell targeting nanoparticles for in vivo generation of regulatory T-cells. ACS Nano 2018, 12, 6637–6647.

[26]

Moore, L.; Yang, J. Y.; Lan, T. T. H.; Osawa, E.; Lee, D. K.; Johnson, W. D.; Xi, J. Z.; Chow, E. K. H.; Ho, D. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano 2016, 10, 7385–7400.

[27]

Jennings, C. G.; Landman, R.; Zhou, Y.; Sharma, J.; Hyman, J.; Movshon, J. A.; Qiu, Z. L.; Roberts, A. C.; Roe, A. W.; Wang, X. Q. et al. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat. Neurosci. 2016, 19, 1123–1130.

[28]

Saga, Y.; Hoshi, E.; Tremblay, L. Roles of multiple Globus pallidus territories of monkeys and humans in motivation, cognition and action: An anatomical, physiological and pathophysiological review. Front. Neuroanat. 2017, 11, 30.

[29]

Y.; Xu, Y. J.; Zhang, G. B.; Ling, D. S.; Wang, M. Q.; Zhou, Y.; Wu, Y. D.; Wu, T.; Hackett, M. J.; Kim, B. H. et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat. Biomed. Eng. 2017, 1, 637–643.

[30]

Xu, J.; Yu, M. X.; Peng, C. Q.; Carter, P.; Tian, J.; Ning, X. H.; Zhou, Q. H.; Tu, Q.; Zhang, G.; Dao, A. et al. Dose dependencies and biocompatibility of renal clearable gold nanoparticles: From mice to non-human primates. Angew. Chem., Int. Ed. 2018, 57, 266–271.

[31]

Yoo, C. H.; DuBois, J. M.; Wang, L.; Tang, Y. J.; Hou, L.; Xu, H.; Chen, J. H.; Liang, S. H.; Izquierdo-Garcia, D.; Wey, H. Y. Preliminary Exploration of pseudo-CT-based attenuation correction for simultaneous PET/MRI brain imaging in nonhuman primates. ACS Omega 2023, 8, 45438–45446.

[32]

Padera, T. P.; Kadambi, A.; Di Tomaso, E.; Carreira, C. M.; Brown, E. B.; Boucher, Y.; Choi, N. C.; Mathisen, D.; Wain, J.; Mark, E. J.; et al. Lymphatic metastasis in the absence of functional Intratumor Lymphatics. Science 2002, 296, 1883–1886.

[33]

Swartz, M. A.; Lund, A. W. Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nat. Rev. Cancer 2012, 12, 210–219.

[34]

Stoffels, I.; Morscher, S.; Helfrich, I.; Hillen, U.; Leyh, J.; Burton, N. C.; Sardella, T. C. P.; Claussen, J.; Poeppel, T. D.; Bachmann, H. S. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med. 2015, 7, 317ra199.

[35]

Zhong, Y. L.; Song, B.; Shen, X. B.; Guo, D. X.; He, Y. Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust pH- and photo-stability. Chem. Commun. 2019, 55, 365–368.

[36]

Pang, Z. Y.; Yan, W. X.; Yang, J.; Li, Q. Z.; Guo, Y.; Zhou, D. J.; Jiang, X. Y. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis. ACS Nano 2022, 16, 16019–16037.

[37]

Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 2001, 50, 3–20.

[38]

Pan, D.; Cai, X.; Yalaz, C.; Senpan, A.; Omanakuttan, K.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. ACS Nano 2012, 6, 1260–1267.

[39]

Vahrmeijer, A. L.; Hutteman, M.; Van Der Vorst, J. R.; Van De Velde, C. J. H.; Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518.

[40]

Dunne, A. A.; Plehn, S.; Schulz, S.; Levermann, A.; Ramaswamy, A.; Lippert, B. M.; Werner, J. A. Lymph node topography of the head and neck in New Zealand White rabbits. Lab. Anim. 2003, 37, 37–43.

[41]

G. H.; Giuliano, A. E.; Somerfield, M. R.; Benson III, A. B.; Bodurka, D. C.; Burstein, H. J.; Cochran, A. J.; Cody III, H. S.; Edge, S. B.; Galper, S. et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J. Clin. Oncol. 2005, 23, 7703–7720.

[42]

McMasters, K. M.; Tuttle, T. M.; Carlson, D. J.; Brown, C. M.; Noyes, R. D.; Glaser, R. L.; Vennekotter, D. J.; Turk, P. S.; Tate, P. S.; Sardi, A. et al. Sentinel lymph node biopsy for breast cancer: A suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. J. Clin. Oncol. 2000, 18, 2560–2566.

[43]

Lyman, G. H.; Temin, S.; Edge, S. B.; Newman, L. A.; Turner, R. R.; Weaver, D. L.; Benson, A. B.; Bosserman, L. D.; Burstein, H. J.; Cody, H. et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American society of clinical oncology clinical practice guideline update. J. Clin. Oncol. 2014, 32, 1365–1383.

[44]

Kim, C. Y.; Lee, H. S.; Han, S. C.; Heo, J. D.; Kwon, M. S.; Ha, C. S.; Han, S. S. Hematological and serum biochemical values in cynomolgus monkeys anesthetized with ketamine hydrochloride. J. Med. Primatol. 2005, 34, 96–100.

[45]

Park, H. K.; Cho, J. W.; Lee, B. S.; Park, H.; Han, J. S.; Yang, M. J.; Im, W. J.; Park, D. Y.; Kim, W. J.; Han, S. C. et al. Reference values of clinical pathology parameters in cynomolgus monkeys ( Macaca fascicularis) used in preclinical studies. Lab. Anim. Res. 2016, 32, 79–86.

[46]

Krag, D. N.; Anderson, S. J.; Julian, T. B.; Brown, A. M.; Harlow, S. P.; Costantino, J. P.; Ashikaga, T.; Weaver, D. L.; Mamounas, E. P.; Jalovec, L. M. et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010, 11, 927–933.

[47]

Akay, C. L.; Albarracin, C.; Torstenson, T.; Bassett, R.; Mittendorf, E. A.; Yi, M.; Kuerer, H. M.; Babiera, G. V.; Bedrosian, I.; Hunt, K. K. et al. Factors impacting the accuracy of intra-operative evaluation of sentinel lymph nodes in breast cancer. Breast J. 2018, 24, 28–34.

[48]

Han, J. F.; Zhang, L.; Cui, M. Y.; Su, Y. Y.; He, Y. Rapid and accurate detection of lymph node metastases enabled through fluorescent silicon nanoparticles-based exosome probes. Anal. Chem. 2021, 93, 10122–10131.

Nano Research
Pages 7404-7414
Cite this article:
Ji X, Chu B, Wu X, et al. Naked-eye visualization of lymph nodes using fluorescence nanoprobes in non-human primate-animal models. Nano Research, 2024, 17(8): 7404-7414. https://doi.org/10.1007/s12274-024-6683-5
Topics:

790

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 February 2024
Revised: 01 April 2024
Accepted: 03 April 2024
Published: 27 June 2024
© Tsinghua University Press 2024
Return