Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The exploration of material failure behavior not only involves defining its limits and underlying mechanisms but also entails devising strategies for improvement and protection in extreme conditions. We've pioneered an advanced multi-scale, high-speed ascending thermal shock testing platform capable of inducing unprecedented heat shocks at rates surpassing 105 °C/s. Through meticulous examination of the thermal shock responses of carbon nanotube (CNT) films, we've achieved remarkable breakthroughs. By employing an innovative macro-scale synchronous tightening and relaxing approach, we've attained a critical temperature differential in CNT films that exceeds an exceptional 2500 °C—surpassing any previously reported metric for high-performance, thermal-shock-resistant materials. Notably, these samples have demonstrated exceptional resilience, retaining virtually unchanged strength even after enduring 10,000 thermal shock cycles at temperatures exceeding 1000 °C. Furthermore, our research has revealed a novel thermal shock/fatigue failure mechanism that fundamentally diverges from conventional theories centered on thermal stress.
Zhu, M. Q.; Bai, Y. X.; Gao, R. Y.; Liu, Y. J.; Zhang, P.; Zhang, H.; Liu, L. Q.; Zhang, Z. Failure-analysis of carbon nanotubes and their extreme applications. Nano Res. 2023, 16, 12364–12383.
Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.
Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.
Huang, J. Y.; Chen, S.; Wang, Z. Q.; Kempa, K.; Wang, Y. M.; Jo, S. H.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Superplastic carbon nanotubes. Nature 2006, 439, 281.
Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040.
Gupta, N.; Penev, E. S.; Yakobson, B. I. Fatigue in assemblies of indefatigable carbon nanotubes. Sci. Adv. 2021, 7, eabj6996.
Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.
Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.
Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. A meta-analysis of conductive and strong carbon nanotube materials. Adv. Mater. 2021, 33, 2008432.
Wei, Y.; Jiang, K. L.; Liu, L.; Chen, Z.; Fan, S. S. Vacuum-breakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications. Nano Lett. 2007, 7, 3792–3797.
Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.
Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.
Bai, Y. X.; Yue, H. J.; Zhang, R. F.; Qian, W. Z.; Zhang, Z.; Wei, F. Mechanical behavior of single and bundled defect-free carbon nanotubes. Acc. Mater. Res. 2021, 2, 998–1009.
Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.
Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D. N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 2013, 4, 2202.
Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.
Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.
Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.
Li, T.; Pickel, A. D.; Yao, Y. G.; Chen, Y. N.; Zeng, Y. Q.; Lacey, S. D.; Li, Y. J.; Wang, Y. L.; Dai, J. Q.; Wang, Y. B. et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3000 K. Nat. Energy 2018, 3, 148–156.
Wu, X. F.; Jiang, C. P.; Song, F.; Li, J.; Shao, Y. F.; Xu, X. H.; Yan, P. Size effect of thermal shock crack patterns in ceramics and numerical predictions. J. Eur. Ceram. Soc. 2015, 35, 1263–1271.
Bai, Y. L.; Kong, F. Y.; He, X. D.; Li, N.; Qi, X. X.; Zheng, Y. T.; Zhu, C. C.; Wang, R. G.; Duff, A. I. Thermal shock behavior of Ti2AlC from 200°C to 1400°C. J. Am. Ceram. Soc. 2017, 100, 4190–4198.
Liao, N.; Jia, D. C.; Yang, Z. H.; Zhou, Y.; Li, Y. W. Enhanced thermal shock and oxidation resistance of Si2BC3N ceramics through MWCNTs incorporation. J. Adv. Ceram. 2018, 7, 276–288.
Liao, N.; Jia, D. C.; Yang, Z. H.; Zhou, Y. Enhanced mechanical properties and thermal shock resistance of Si2BC3N ceramics with SiC coated MWCNTs. J. Adv. Ceram. 2019, 8, 121–132.
He, R. J.; Qu, Z. L.; Liang, D. Rapid heating thermal shock study of ultra high temperature ceramics using an in situ testing method. J. Adv. Ceram. 2017, 6, 279–287.
Zhang, X. H.; Hu, P.; Han, J. C.; Meng, S. H. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Compos. Sci. Technol. 2008, 68, 1718–1726.
Monteverde, F.; Savino, R.; De Stefano Fumo, M.; Di Maso, A. Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions. J. Eur. Ceram. Soc. 2010, 30, 2313–2321.
Zhang, X. H.; Han, J. C.; He, X. D.; Yan, C.; Wang, B. L.; Xu, Q. Ablation-resistance of combustion synthesized TiB2-Cu cermet. J. Am. Ceram. Soc. 2005, 88, 89–94.
Schneider, G. A.; Petzow, G. Thermal shock testing of ceramics-a new testing method. J. Am. Ceram. Soc. 1991, 74, 98–102.
Neuman, E. W.; Hilmas, G. E.; Fahrenholtz, W. G. Mechanical behavior of zirconium diboride-silicon carbide-boron carbide ceramics up to 2200 °C. J. Eur. Ceram. Soc. 2015, 35, 463–476.
Li, Z. H.; Wang, Y. J.; Ma, M. D.; Ma, H. C.; Hu, W. T.; Zhang, X.; Zhuge, Z. W.; Zhang, S. S.; Luo, K.; Gao, Y. F. et al. Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene. Nat. Mater. 2023, 22, 42–49.
Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.
Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.
Hasselman, D. P. H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc. 1969, 52, 600–604.
Schneider, G. A. Thermal shock criteria for ceramics. Ceram. Int. 1991, 17, 325–333.
Liu, C. B.; Cai, C. Y.; Xie, J. W.; Guo, W. M.; Qin, H.; Gao, P. Z.; Xiao, H. N. Effect of surface brittle-to-ductile transition on high-temperature thermal shock resistance of Al2O3 ceramics. Ceram. Int. 2022, 48, 20627–20638.
Kingery, W. D. Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 1955, 38, 3–15.
Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.
Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.
Zhang, X. H.; Wang, Z.; Hu, P.; Han, W. B.; Hong, C. Q. Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers. Scr. Mater. 2009, 61, 809–812.
Peng, X.; Qin, Y.; Zhang, X. A constitutive model for the metals subjected to thermomechanical loading with fast heating during heating-assisted forming. J. Mater. Process. Technol. 2005, 167, 244–250.
Yue, X.; Peng, X. H.; Wei, Z.; Chen, X. S.; Fu, T. Effect of heating rate on the strength of ZrB2-SiC composite subjected to cyclic thermal shock. Ceram. Int. 2019, 45, 15400–15405.
Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553.
Tong, Y. G.; Zhu, W. T.; Bai, S. X.; Hu, Y. L.; Xie, X. Q.; Li, Y. Thermal shock resistance of continuous carbon fiber reinforced ZrC based ultra-high temperature ceramic composites prepared via Zr-Si alloyed melt infiltration. Mater. Sci. Eng.: A 2018, 735, 166–172.
Gutiérrez, H. R.; Kim, U. J.; Kim, J. P.; Eklund, P. C. Thermal conversion of bundled carbon nanotubes into graphitic ribbons. Nano Lett. 2005, 5, 2195–2201.
Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Liu, L. Q.; Zhang, Z. Dynamic electrical failure of carbon nanotube ribbons. Carbon 2023, 202, 425–431.
Kuznetsov, V. L.; Elumeeva, K. V.; Ishchenko, A. V.; Beylina, N. Y.; Stepashkin, A. A.; Moseenkov, S. I.; Plyasova, L. M.; Molina, I. Y.; Romanenko, A. I.; Anikeeva, O. B. et al. Multi-walled carbon nanotubes with ppm level of impurities. Phys. Status Solidi (B) 2010, 247, 2695–2699.
Li, J. L.; Wang, L. J.; He, T.; Jiang, W. Surface graphitization and mechanical properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 2007, 45, 2636–2642.
Chen, P.; Wu, X.; Sun, X.; Lin, J.; Ji, W.; Tan, K. L. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 1999, 82, 2548–2551.
Palaci, I.; Fedrigo, S.; Brune, H.; Klinke, C.; Chen, M.; Riedo, E. Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 2005, 94, 175502.
Carlsson, L. A.; Lindstrom, T. A shear-lag approach to the tensile strength of paper. Compos. Sci. Technol. 2005, 65, 183–189.
Guo, J. R.; Fu, S. B.; Deng, Y. P.; Xu, X.; Laima, S. J.; Liu, D. Z.; Zhang, P. Y.; Zhou, J.; Zhao, H.; Yu, H. X. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022, 606, 909–916.
Fu, Q. G.; Wang, L.; Tian, X. F.; Shen, Q. L. Effects of thermal shock on the microstructures, mechanical and thermophysical properties of SiCnws-C/C composites. Compos. Part B: Eng. 2019, 164, 620–628.
Yan, N. N.; Fu, Q. G.; Zhang, S.; Zhang, J. P.; Sun, J.; Shen, Q. L. Effects of thermal shock on the microstructure, mechanical and thermophysical properties of ZrC-C composites. Compos. Part A: Appl. Sci. Manuf. 2021, 151, 106642.
Yin, X. W.; Cheng, L. F.; Zhang, L. T.; Xu, Y. D. Thermal shock behavior of 3-dimensional C/SiC composite. Carbon 2002, 40, 905–910.