Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To avoid interference from unexpected background noises and obtain high fidelity voice signal, acoustic sensors with high sensitivity, flat frequency response, and high signal-to-noise ratio (SNR) are urgently needed for voice recognition. Graphene-oxide (GO) has received extensive attention due to its advantages of controllable thickness and high fracture strength. However, low mechanical sensitivity (SM) introduced by undesirable initial stress limits the performance of GO material in the field of voice recognition. To alleviate the aforementioned issue, GO diaphragm with annular corrugations is proposed. By means of the reusable copper mold machined by picosecond laser, the fabrication and transfer of corrugated GO diaphragm are realized, thus achieving a Fabry–Perot (F–P) acoustic sensor. Benefitting from the structural advantage of the corrugated GO diaphragm, our F–P acoustic sensor exhibits high SM (43.70 nm/Pa@17 kHz), flat frequency response (−3.2 to 3.7 dB within 300–3500 Hz), and high SNR (76.66 dB@1 kHz). In addition, further acoustic measurements also demonstrate other merits, including an excellent frequency detection resolution (0.01 Hz) and high time stability (output relative variation less than 6.7% for 90 min). Given the merits presented before, the fabricated F–P acoustic sensor with corrugated GO diaphragm can serve as a high-fidelity platform for acoustic detection and voice recognition. In conjunction with the deep residual learning framework, high recognition accuracy of 98.4% is achieved by training and testing the data recorded by the fabricated F–P acoustic sensor.
Long, Y.; He, P. S.; Xu, R. X.; Hayasaka, T.; Shao, Z. C.; Zhong, J. W.; Lin, L. W. Molybdenum-carbide-graphene composites for paper-based strain and acoustic pressure sensors. Carbon 2020, 157, 594–601.
Jiang, Y.; Zhang, Y. F.; Ning, C.; Ji, Q. Q.; Peng, X.; Dong, K.; Wang, Z. L. Ultrathin eardrum-inspired self-powered acoustic sensor for vocal synchronization recognition with the assistance of machine learning. Small 2022, 18, 2106960.
Chen, J. W.; Li, L. L.; Ran, W. H.; Chen, D.; Wang, L. L.; Shen, G. Z. An intelligent MXene/MoS2 acoustic sensor with high accuracy for mechano-acoustic recognition. Nano Res. 2023, 16, 3180–3187.
Jung, Y. H.; Hong, S. K.; Wang, H. S.; Han, J. H.; Pham, T. X.; Park, H.; Kim, J.; Kang, S.; Yoo, C. D.; Lee, K. J. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, 1904020.
Wang, H. S.; Hong, S. K.; Han, J. H.; Jung, Y. H.; Jeong, H. K.; Im, T. H.; Jeong, C. K.; Lee, B. Y.; Kim, G.; Yoo, C. D. et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 2021, 7, eabe5683.
Park, J.; Kang, D. H.; Chae, H.; Ghosh, S. K.; Jeong, C.; Park, Y.; Cho, S.; Lee, Y.; Kim, J.; Ko, Y. et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human–machine interface. Sci. Adv. 2022, 8, eabj9220.
Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.
Xiong, J. H.; Hsiang, E. L.; He, Z. Q.; Zhan, T.; Wu, S. T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light: Sci. Appl. 2021, 10, 216.
Lan, B. L.; Yang, T.; Tian, G.; Ao, Y.; Jin, L.; Xiong, D.; Wang, S. L.; Zhang, H. R.; Deng, L.; Sun, Y. et al. Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing. ACS Appl. Mater. Interfaces 2023, 15, 12146–12153.
Liu, Y. J.; Guan, C. G.; Tong, Y. L.; Chu, W. X.; Zhou, R. L.; Zhou, Y. K. SNR model of optical fiber acoustic sensing system based on F–P structure. Photonics 2023, 10, 676.
Le, T. S. D.; An, J. N.; Huang, Y.; Vo, Q.; Boonruangkan, J.; Tran, T.; Kim, S. W.; Sun, G. Z.; Kim, Y. J. Ultrasensitive anti-Interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 2019, 13, 13293–13303.
Lee, S.; Kim, J.; Roh, H.; Kim, W.; Chung, S.; Moon, W.; Cho, K. A high-fidelity skin-attachable acoustic sensor for realizing auditory electronic skin. Adv. Mater. 2022, 34, 2109545.
Okamoto, Y.; Nguyen, T. V.; Takahashi, H.; Takei, Y.; Okada, H.; Ichiki, M. Highly sensitive low-frequency-detectable acoustic sensor using a piezoresistive cantilever for health monitoring applications. Sci. Rep. 2023, 13, 6503.
Wang, W. Y.; Stipp, P. N.; Ouaras, K.; Fathi, S.; Huang, Y. Y. S. Broad bandwidth, self-powered acoustic sensor created by dynamic near-field electrospinning of suspended, transparent piezoelectric nanofiber mesh. Small 2020, 16, 2000581.
Yan, W.; Noel, G.; Loke, G.; Meiklejohn, E.; Khudiyev, T.; Marion, J.; Rui, G. C.; Lin, J. N.; Cherston, J.; Sahasrabudhe, A. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022, 603, 616–623.
Park, J. H.; Lee, H. E.; Jeong, C. K.; Kim, D. H.; Hong, S. K.; Park, K. I.; Lee, K. J. Self-powered flexible electronics beyond thermal limits. Nano Energy 2019, 56, 531–546.
Xu, J.; Wood, G. S.; Mastropaolo, E.; Newton, M. J.; Cheung, R. Realization of a graphene/PMMA acoustic capacitive sensor released by silicon dioxide sacrificial layer. ACS Appl. Mater. Interfaces 2021, 13, 38792–38798.
Jang, J.; Lee, J.; Jang, J. H.; Choi, H. A triboelectric-based artificial basilar membrane to mimic cochlear tonotopy. Adv. Healthc. Mater. 2016, 5, 2481–2487.
Choi, J.; Jung, I.; Kang, C. Y. A brief review of sound energy harvesting. Nano Energy 2019, 56, 169–183.
Yuan, M.; Li, C. H.; Liu, H. M.; Xu, Q. H.; Xie, Y. N. A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing. Nano Energy 2021, 85, 105962.
Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.
Yu, F. F.; Liu, Q. W.; Gan, X.; Hu, M. X.; Zhang, T. Y.; Li, C.; Kang, F. Y.; Terrones, M.; Lv, R. T. Ultrasensitive pressure detection of few-layer MoS2. Adv. Mater. 2017, 29, 1603266.
Xu, F.; Shi, J. H.; Gong, K.; Li, H. F.; Hui, R. Q.; Yu, B. L. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaphragm. Opt. Lett. 2014, 39, 2838–2840.
Moradi, H.; Parvin, P.; Ojaghloo, A.; Shahi, F. Ultrasensitive fiber optic Fabry Pérot acoustic sensor using phase detection. Measurement 2021, 172, 108953.
Ma, J.; Jin, W.; Ho, H. L.; Dai, J. Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493–2495.
Chen, Y. F.; Wan, H. D.; Lu, Y.; Wang, Z. J.; Fan, W. W.; Zhang, Z. X.; Hu, F. R. An air-pressure and acoustic fiber sensor based on graphene-oxide Fabry–Perot interferometer. Opt. Fiber Technol. 2022, 68, 102754.
Li, C.; Gao, X. Y.; Guo, T. T.; Xiao, J.; Fan, S. C.; Jin, W. Analyzing the applicability of miniature ultra-high sensitivity Fabry–Perot acoustic sensor using a nanothick graphene diaphragm. Meas. Sci. Technol. 2015, 26, 085101.
Ma, J.; Xuan, H. F.; Ho, H. L.; Jin, W.; Yang, Y. H.; Fan, S. C. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technol. Lett. 2013, 25, 932–935.
Dong, Q.; Bae, H.; Zhang, Z. J.; Chen, Y. Y.; Wen, Z. S.; Olson, D. A.; Yu, M.; Liu, H. J. Miniature fiber optic acoustic pressure sensors with air-backed graphene diaphragms. J. Vib. Acoust. 2019, 141, 041003.
Monteiro, C. S.; Raposo, M.; Ribeiro, P. A.; Silva, S. O.; Frazão, O. Acoustic optical fiber sensor based on graphene oxide membrane. Sensors 2021, 21, 2336.
Gong, T.; Lam, D. V.; Liu, R. L.; Won, S.; Hwangbo, Y.; Kwon, S.; Kim, J.; Sun, K.; Kim, J. H.; Lee, S. M. et al. Thickness dependence of the mechanical properties of free-standing graphene oxide papers. Adv. Funct. Mater. 2015, 25, 3756–3763.
Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.
Choi, I.; Jeong, H. Y.; Shin, H.; Kang, G.; Byun, M.; Kim, H.; Chitu, A. M.; Im, J. S.; Ruoff, R. S.; Choi, S. Y. et al. Laser-induced phase separation of silicon carbide. Nat. Commun. 2016, 7, 13562.
Liu, B.; Lin, J.; Liu, H.; Jin, A.; Jin, P. Extrinsic Fabry–Perot fiber acoustic pressure sensor based on large-area silver diaphragm. Microelectron. Eng. 2016, 166, 50–54.
Koenig, S. P.; Boddeti, N. G.; Dunn, M. L.; Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011, 6, 543–546.
Lu, Z. X.; Dunn, M. L. van der Waals adhesion of graphene membranes. J. Appl. Phys. 2010, 107, 044301.
Liu, B.; Zhou, H.; Liu, L.; Wang, X.; Shan, M. G.; Jin, P.; Zhong, Z. An optical fiber Fabry–Perot microphone based on corrugated silver diaphragm. IEEE Trans. Instrum. Meas. 2018, 67, 1994–2000.
Scheeper, P. R.; Olthuis, W.; Bergveld, P. The design, fabrication, and testing of corrugated silicon nitride diaphragms. J. Microelectromech. Syst. 1994, 3, 36–42.
Wang, W. J.; Lin, R. M.; Ren, Y. Design and fabrication of silicon condenser microphone using single deeply corrugated diaphragm technique. Microelectron. Int. 2003, 20, 36–40.
Liu, B.; Zheng, G. Q.; Wang, A. L.; Gui, C. Y.; Yu, H. C.; Shan, M. G.; Jin, P.; Zhong, Z. Optical fiber Fabry–Perot acoustic sensors based on corrugated silver diaphragms. IEEE Trans. Instrum. Meas. 2020, 69, 3874–3881.
Liu, B.; Zhang, X. Q.; Wang, A. L.; Liu, Y. F.; Wang, Y.; Shan, M. G.; Liu, L.; Jin, P.; Zhong, Z. Optical fiber Fabry–Perot acoustic sensors based on corrugated PET diaphragms. IEEE Sens. J. 2021, 21, 14860–14867.
Kim, K.; Lee, Z.; Malone, B. D.; Chan, K. T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M. F.; Cohen, M. L.; Zettl, A. Multiply folded graphene. Phys. Rev. B 2011, 83, 245433.
Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.
Xu, K.; Cao, P. G.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446–4451.
Wu, Y.; Yu, C. B.; Wu, F.; Li, C.; Zhou, J. H.; Gong, Y.; Rao, Y. J.; Chen, Y. F. A highly sensitive fiber-optic microphone based on graphene oxide membrane. J. Lightwave Technol. 2017, 35, 4344–4349.
Chen, K.; Yu, Z. H.; Yu, Q. X.; Guo, M.; Zhao, Z. H.; Qu, C.; Gong, Z. F.; Yang, Y. Fast demodulated white-light interferometry-based fiber-optic Fabry–Perot cantilever microphone. Opt. Lett. 2018, 43, 3417–3420.
Li, C. X.; Qi, H. C.; Han, X.; Zhao, X. Y.; Zhang, Y. J.; Huang, J. Y.; Peng, W.; Chen, K. Ultrahigh-speed phase demodulation of a Fabry–Perot sensor based on fiber array parallel spectral detection. Opt. Lett. 2024, 49, 714–717.
Zhao, X. Y.; Li, C. X.; Qi, H. C.; Huang, J. Y.; Xu, Y. F.; Wang, Z. Z.; Han, X.; Guo, M.; Chen, K. Integrated near-infrared fiber-optic photoacoustic sensing demodulator for ultra-high sensitivity gas detection. Photoacoustics 2023, 33, 100560.
Yang, Y.; Wang, Y.; Chen, K. Wideband fiber-optic Fabry–Perot acoustic sensing scheme using high-speed absolute cavity length demodulation. Opt. Express 2021, 29, 6768–6779.
Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M. M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123–10129.
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.
Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.
Muzyka, R.; Kwoka, M.; Smędowski, Ł.; Díez, N.; Gryglewicz, G. Oxidation of graphite by different modified Hummers methods. New Carbon Mater. 2017, 32, 15–20.
Santamaría-Juárez, G.; Gómez-Barojas, E.; Quiroga-González, E.; Sánchez-Mora, E.; Quintana-Ruiz, M.; Santamaría-Juárez, J. D. Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Mater. Res. Express 2019, 6, 125631.
Tang, S.; Jin, S. L.; Zhang, R.; Liu, Y.; Wang, J. C.; Hu, Z.; Lu, W. Z.; Yang, S.; Qiao, W. M.; Ling, L. C. et al. Effective reduction of graphene oxide via a hybrid microwave heating method by using mildly reduced graphene oxide as a susceptor. Appl. Surf. Sci. 2019, 473, 222–229.
Li, W. Y.; Liu, J. G.; Yan, C. W. Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery. Carbon 2013, 55, 313–320.
Huang, Q. Q.; Deng, S.; Li, M.; Wen, X. Y.; Lu, H. F. Fabry–Perot acoustic sensor based on a thin gold diaphragm. Opt. Eng. 2020, 59, 064105.
Rahaman, A.; Park, C. H.; Kim, B. Design and characterization of a MEMS piezoelectric acoustic sensor with the enhanced signal-to-noise ratio. Sens. Actuators A: Phys. 2020, 311, 112087.
Ni, W. J.; Lu, P.; Fu, X.; Zhang, W.; Shum, P. P.; Sun, H. D.; Yang, C. Y.; Liu, D. M.; Zhang, J. S. Ultrathin graphene diaphragm-based extrinsic Fabry–Perot interferometer for ultra-wideband fiber optic acoustic sensing. Opt. Express 2018, 26, 20758–20767.
Han, Y.; Zheng, Y. Q.; Li, N.; Luo, Y. F.; Xue, C. Y.; Bai, J. D.; Chen, J. M. Acoustic sensing performance investigation based on grooves etched in the ring resonators. Micromachines 2023, 14, 512.
Zhang, G. Y.; Xiong, Z. J.; Guo, M.; Chen, K.; Zhao, X. Y.; Xu, L.; Wang, N.; Ni, R.; Gong, Z. F.; Peng, W. Low-frequency optical fiber Fabry–Perot acoustic sensor based on all-phase cross-correlation demodulation. J. Lightwave Technol. 2022, 40, 7431–7438.
Moore, B. C. J. Relation between the critical bandwidth and the frequency-difference limen. J. Acoust. Soc. Am. 1974, 55, 359–359.
Jo, J.; Yoo, H.; Park, I. C. Energy-efficient floating-point MFCC extraction architecture for speech recognition systems. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2016, 24, 754–758.
Lu, X. Q.; Wu, Y.; Gong, Y.; Rao, Y. J. A miniature fiber-optic microphone based on an annular corrugated MEMS diaphragm. J. Lightwave Technol. 2018, 36, 5224–5229.