AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cost-effective fabrication of liquid metals via a laser induced graphene stamp for highly-stretchable integrated optoelectronics

Weiqi Sun§Li Xiang§( )Zebang LuoHui WangDong LiAnlian Pan( )
College of Materials Science and Engineering, Hunan University, Changsha 410082, China

§ Weiqi Sun and Li Xiang contributed equally to this work.

Show Author Information

Graphical Abstract

Utilizing the laser induced graphene stamp to pattern the liquid metals, a stretchable integrated multifunctional optoelectronic system was demonstrated.

Abstract

Stretchable electronics have found widespread applications in various fields such as wearable electronics, soft robots, and bioelectronics. As an important promising alternative of traditional rigid conductors, liquid metals have demonstrated immense potential to provide high conductivity and stretchability for the stretchable electronic systems. However, limited by their fluidity and high surface tension, challenges remain in achieving liquid metal patterns with low-cost, high-precision, large-scale, and complex geometry. Here, a fabrication technique was proposed based on laser-induced graphene (LIG) stamps to enable liquid metal self-selectively adhere to substrates. Liquid metal patterns could thus be achieved in different designed geometries and could be transferred onto stretchable substrates. The liquid metal patterns exhibit exceptional electrical conductivity (3.24 × 106 S/m even under 1000% strain), high stretchability (1000% strain, maximum of 2500%), small resistance changes under significant deformations (with a quality factor of 62.5 under 1000% strain), and high resolution (down to 50 μm). Utilizing the patterned liquid metals, a stretchable integrated multifunctional optoelectronic system was demonstrated, encompassing a stretchable display matrix, a pressure sensor array, a wireless powering coil, and cardiovascular sensors, which further highlight the remarkable application potential of liquid metals in optoelectronic user-interaction and advanced physiological monitoring.

Electronic Supplementary Material

Video
6687_ESM2.mp4
Download File(s)
6687_ESM1.pdf (1.2 MB)

References

[1]

Jeon, G. J.; Yeom, H. I.; Jin, T. Y.; Kim, J.; Yang, J.; Park, S. H. K. A highly sensitive, stable, scalable pressure sensor based on a facile baking-inspired foaming process for a human-computer interface. J. Mater. Chem. C 2020, 8, 4271–4278.

[2]

Luo, S.; Zhou, X.; Tang, X. Y.; Li, J. L.; Wei, D. C.; Tai, G. J.; Chen, Z. Y.; Liao, T. M.; Fu, J. T.; Wei, D. P. et al. Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 2021, 80, 105580.

[3]

Zhao, P. F.; Zhang, R. M.; Tong, Y. H.; Zhao, X. L.; Zhang, T.; Tang, Q. X.; Liu, Y. C. Strain-discriminable pressure/proximity sensing of transparent stretchable electronic skin based on PEDOT: PSS/SWCNT electrodes. ACS Appl. Mater. Interfaces 2020, 12, 55083–55093.

[4]

Xiong, Y. X.; Shen, Y. K.; Tian, L.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 2020, 70, 104436.

[5]

Li, S.; Xu, J. W.; Li, R.; Wang, Y. K.; Zhang, M. Y.; Li, J.; Yin, S. Z.; Liu, G. D.; Zhang, L. J.; Li, B. Q. et al. Stretchable electronic facial masks for sonophoresis. ACS Nano 2022, 16, 5961–5974.

[6]

Yamamoto, M.; Karasawa, R.; Okuda, S.; Takamatsu, S.; Itoh, T. Long wavy copper stretchable interconnects fabricated by continuous microcorrugation process for wearable applications. Eng. Rep. 2020, 2, e12143.

[7]

Gu, J. M.; Ahn, J.; Jung, J.; Cho, S.; Choi, J.; Jeong, Y.; Park, J.; Hwang, S.; Cho, I.; Ko, J. et al. Self-powered strain sensor based on the piezo-transmittance of a mechanical metamaterial. Nano Energy 2021, 89, 106447.

[8]

Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

[9]

Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

[10]

Zu, M.; Li, Q. W.; Wang, G. J.; Byun, J. H.; Chou, T. W. Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 2013, 23, 789–793.

[11]

Lin, Y.; Li, Q. S.; Ding, C.; Wang, J. Y.; Yuan, W.; Liu, Z. Y.; Su, W. M.; Cui, Z. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 2022, 15, 4590–4598.

[12]

Lo, L. W.; Zhao, J. Y.; Wan, H. C.; Wang, Y.; Chakrabartty, S.; Wang, C. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces 2021, 13, 21693–21702.

[13]

Zhang, S.; Zhang, Y. H.; Li, B.; Zhang, P.; Kan, L.; Wang, G. J.; Wei, H.; Zhang, X. Y.; Ma, N. One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits. ACS Appl. Mater. Interfaces 2019, 11, 32441–32448.

[14]

Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

[15]

Serhan, M.; Jackemeyer, D.; Long, M.; Sprowls, M.; Perez, I. D.; Maret, W.; Chen, F.; Tao, N. J.; Forzani, E. Total iron measurement in human serum with a novel smartphone-based assay. IEEE J. Transl. Eng. Health Med. 2020, 8, 2800309.

[16]

Shu, J.; Ge, D. A.; Wang, E. L.; Ren, H. T.; Cole, T.; Tang, S. Y.; Li, X. P.; Zhou, X. B.; Li, R. J.; Jin, H. et al. A liquid metal artificial muscle. Adv. Mater. 2021, 33, 2103062.

[17]

Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; De Castro, I. A.; Esrafilzadeh, D.; Barrow, S. J.; Dickey, M. D.; Kalantar-Zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111.

[18]

Kim, M.; Lim, H.; Ko, S. H. Liquid metal patterning and unique properties for next-generation soft electronics. Adv. Sci. 2023, 10, 2205795.

[19]

Lazarus, N.; Bedair, S. S.; Kierzewski, I. M. Ultrafine pitch stencil printing of liquid metal alloys. ACS Appl. Mater. Interfaces 2017, 9, 1178–1182.

[20]

Park, C. W.; Moon, Y. G.; Seong, H.; Jung, S. W.; Oh, J. Y.; Na, B. S.; Park, N. M.; Lee, S. S.; Im, S. G.; Koo, J. B. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl. Mater. Interfaces 2016, 8, 15459–15465.

[21]

Lin, Y. L.; Gordon, O.; Khan, M. R.; Vasquez, N.; Genzer, J.; Dickey, M. D. Vacuum filling of complex microchannels with liquid metal. Lab Chip 2017, 17, 3043–3050.

[22]

Kim, T.; Kim, K.; Kim, S.; Lee, J.; Kim, W. Micropatterning of liquid metal by dewetting. J. Microelectromech. Syst. 2017, 26, 1244–1247.

[23]

Zhou, L. Y.; Fu, J. Z.; Gao, Q.; Zhao, P.; He, Y. All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal-silicone inks. Adv. Funct. Mater. 2020, 30, 1906683.

[24]

Rahim, M. A.; Centurion, F.; Han, J. L.; Abbasi, R.; Mayyas, M.; Sun, J.; Christoe, M. J.; Esrafilzadeh, D.; Allioux, F. M.; Ghasemian, M. B. et al. Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing. Adv. Funct. Mater. 2021, 31, 2007336.

[25]

Tabatabai, A.; Fassler, A.; Usiak, C.; Majidi, C. Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir 2013, 29, 6194–6200.

[26]

Joshipura, I. D.; Ayers, H. R.; Majidi, C.; Dickey, M. D. Methods to pattern liquid metals. J. Mater. Chem. C 2015, 3, 3834–3841.

[27]

Tetik, H.; Markgraf, E.; Kato, K.; Chan, V. N.; Malakooti, M. H. Highly conductive laser-induced graphene through the deposition of liquid metal particles for flexible electronics. Flex. Print. Electron. 2023, 8, 035001.

[28]

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

[29]

Chen, B. L.; Johnson, Z. T.; Sanborn, D.; Hjort, R. G.; Garland, N. T.; Soares, R. R. A.; Van Belle, B.; Jared, N.; Li, J. Z.; Jing, D. P. et al. Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices. ACS Nano 2022, 16, 15–28.

[30]

Zavabeti, A.; Ou, J. Z.; Carey, B. J.; Syed, N.; Orrell-Trigg, R.; Mayes, E. L. H.; Xu, C. L.; Kavehei, O.; O’Mullane, A. P.; Kaner, R. B. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 2017, 358, 332–335.

[31]

Boley, J. W.; White, E. L.; Chiu, G. T. C.; Kramer, R. K. Direct writing of gallium-indium alloy for stretchable electronics. Adv. Funct. Mater. 2014, 24, 3501–3507.

[32]

Wang, S. L.; Nie, Y. Y.; Zhu, H. Y.; Xu, Y. R.; Cao, S. T.; Zhang, J. X.; Li, Y. Y.; Wang, J. H.; Ning, X. H.; Kong, D. S. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 2022, 8, eabl5511.

[33]

Guo, R.; Sun, X. Y.; Yao, S. Y.; Duan, M. H.; Wang, H. Z.; Liu, J.; Deng, Z. S. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv. Mater. Technol. 2019, 4, 1900183.

[34]

Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human–soft actuators interaction. Adv. Mater. 2020, 32, 1908475.

[35]

Xu, K. C.; Lu, Y. Y.; Honda, S.; Arie, T.; Akita, S.; Takei, K. Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C 2019, 7, 9609–9617.

[36]

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

[37]

Wang, Y. N.; Wang, Y.; Zhang, P. P.; Liu, F.; Luo, S. D. Laser-induced freestanding graphene papers: A new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 2018, 14, 1802350.

[38]

Duy, L. X.; Peng, Z. W.; Li, Y. L.; Zhang, J. B.; Ji, Y.; Tour, J. M. Laser-induced graphene fibers. Carbon 2018, 126, 472–479.

[39]

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

[40]

Han, R. G.; Wang, L.; Tang, X. L.; Qian, J.; Yu, J. B.; Chen, X. P.; Huang, Y. X. Facile fabrication of rGO/LIG-based temperature sensor with high sensitivity. Mater. Lett. 2021, 304, 130637.

[41]

Küper, S.; Brannon, J.; Brannon, K. Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl. Phys. A 1993, 56, 43–50.

[42]

Ding, Y.; Guo, X. L.; Qian, Y. M.; Xue, L. G.; Dolocan, A.; Yu, G. H. Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting. Adv. Mater. 2020, 32, 2002577.

[43]

Ding, X. R.; Zhao, N.; Yang, G. Z.; Pettigrew, R. I.; Lo, B.; Miao, F.; Li, Y.; Liu, J.; Zhang, Y. T. Continuous blood pressure measurement from invasive to unobtrusive: Celebration of 200th birth anniversary of carl Ludwig. IEEE J. Biomed. Health Inf. 2016, 20, 1455–1465.

[44]

Hughes, D. J.; Babbs, C. F.; Geddes, L. A.; Bourland, J. D. Measurements of young’s modulus of elasticity of the canine aorta with ultrasound. Ultrason. Imaging 1979, 1, 356–367.

[45]
Poon, C. C. Y.; Zhang, Y. T. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 2005, pp 5877–5880.
[46]

Miyamoto, A.; Lee, S.; Cooray, N.F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature nanotechnology. 2017, 12, 907–913.

[47]

Chen, G.; Matsuhisa, N.; Liu, Z.; Qi, D.; Cai, P.; Jiang, Y.; Wan, C.; Cui, Y.; Leow, W.R.; Liu, Z.; et al. Plasticizing silk protein for on-skin stretchable eelectrodes. Adv Mater. 2018, 30, 1–7.

[48]

Zhang, F.; Ren, D. H.; Huang, L. Q.; Zhang, Y. H.; Sun, Y. X.; Liu, D.; Zhang, Q.; Feng, W.; Zheng, Q. B. 3D interconnected conductive graphite nanoplatelet welded carbon nanotube networks for stretchable conductors. Adv Funct Mater. 2021, 31.

[49]

Song P., Song J. N., Zhang Y . Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Compos Part B Eng. 2020, 191, 107979.

[50]

Wang, M.; Ma, C.; Uzabakiriho, P. C.; Chen, X.; Chen, Z.; Cheng, Y.; Wang, Z.; Zhao, G. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible eelectronics. ACS Nano. 2021, 15, 19364–19376.

[51]

Zhao, R. Q.; Guo, R.; Xu, X. L.; Liu, J. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS Appl. Mater. Interfaces. 2020, 12, 36723–36730

[52]

Mou, L.; Qi, J.; Tang, L. X.; Dong, R. H.; Xia, Y.; Gao, Y.; Jiang, X. Y. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small. 2020, 16, 1–9

[53]

Jo, Y.; Hwang, J. H.; Lee, S. S.; Lee, S. Y.; Kim, Y. S.; Kim, D. G.; Choi, Y.; Jeong, S. Printable self-activated liquid metal stretchable conductors from polyvinylpyrrolidone-functionalized eutectic gallium indium composites. ACS Appl. Mater. Interfaces. 2022, 14, 10747–10757

[54]

Chen, S. W.; Fan, S. C.; Qi, J. M.; Xiong, Z.; Qiao, Z.; Wu, Z. X.; Yeo, J. C.; Lim, C. T. Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor. Adv. Mater. 2023, 35, 1–14

Nano Research
Pages 7603-7613
Cite this article:
Sun W, Xiang L, Luo Z, et al. Cost-effective fabrication of liquid metals via a laser induced graphene stamp for highly-stretchable integrated optoelectronics. Nano Research, 2024, 17(8): 7603-7613. https://doi.org/10.1007/s12274-024-6687-1
Topics:

893

Views

1

Crossref

0

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 28 February 2024
Revised: 03 April 2024
Accepted: 04 April 2024
Published: 01 June 2024
© Tsinghua University Press 2024
Return