AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-atom Zn confined in hierarchical hollow microstructure as an acid/base-resistant microwave absorption materials

Yue Lou1,§Jiao Li1,§Xiaokun Li1,§Zhenyu Zhu1Zhan Shi2( )Biao Xu1( )
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

§ Yue Lou, Jiao Li, and Xiaokun Li contributed equally to this work.

Show Author Information

Graphical Abstract

An N-doped porous carbon material with reliable acid-alkali resistance was created by spray pyrolysis. The material exhibited exceptional microwave absorption of −50.4 dB at 15.2 GHz in the 20% mass ratio sample.

Abstract

Developing acid/base-resistant and low-price microwave-absorbing materials with lighter weight is highly desired for practical applications in extreme environments. Herein, we demonstrate the successful synthesis of the N-doped porous carbon (NC) material with hierarchical pore structure by the spray pyrolysis method. The large specific surface area (SBET = 707.53 m2·g−1) of materials enables multiple scattering of incident electromagnetic waves, and N doping greatly enhances the electrical conductivity of the material. Notably, single-atom Zn can adjust the local electronic structure of adjacent sites such as carbon and nitrogen atoms, induce the center of polarization, and thus change the dielectric and electronic properties of the host material. The porous carbon coating of single-atom Zn avoids the deterioration of electromagnetic parameters caused by the accumulation of magnetic particles under high-temperature pyrolysis. At the same time, they can also be used in various complex environments, such as acidic and basic environments. Ultimately, NC-1000, with high surface area, low density, and good chemical stability, obtained a minimum reflection loss (RLmin) of −50.5 dB and an effective absorption bandwidth (EAB) exceeding 5.1 GHz at the thickness of 1.9 mm. After soaking in the strong acid and base solution, the electromagnetic wave absorption performance of the material decreased by < 15%. Widely available raw materials and a simple preparation scheme are expected to expedite industrial mass production for this novel type of materials.

Electronic Supplementary Material

Download File(s)
6689_ESM.pdf (1.3 MB)

References

[1]

Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

[2]

Gao, T.; Zhao, R. Z.; Li, Y. X.; Zhu, Z. Y.; Hu, C. L.; Ji, L. Z.; Zhang, J.; Zhang, X. F. Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2204370.

[3]

Houbi, A.; Aldashevich, Z. A.; Atassi, Y.; Bagasharova Telmanovna, Z.; Saule, M.; Kubanych, K. Microwave absorbing properties of ferrites and their composites: A review. J. Magn. Magn. Mater. 2021, 529, 167839.

[4]

Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

[5]

Wang, B. L.; Wu, Q.; Fu, Y. G.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109.

[6]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[7]

Chen, X. L.; Jia, Z. R.; Feng, A. L.; Wang, B. B.; Tong, X. H.; Zhang, C. H.; Wu, G. L. Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interf. Sci. 2019, 553, 465–474.

[8]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[9]

Li, N.; Huang, G. W.; Li, Y. Q.; Xiao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2018, 10, 19278.

[10]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[11]

Liao, Z. J.; Ma, M. L.; Tong, Z. Y.; Bi, Y. X.; Chung, K. L.; Qiao, M. T.; Ma, Y.; Ma, A. J.; Wu, G. L.; Li, Z. X. et al. Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber. J. Colloid Interface Sci. 2021, 600, 90–98.

[12]

Zhao, B.; Hamidinejad, M.; Zhao, C. X.; Li, R. S.; Wang, S.; Kazemi, Y.; Park, C. B. A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. J. Mater. Chem. A 2019, 7, 133–140.

[13]

Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

[14]

Cai, Z. X.; Su, L.; Wang, H. J.; Xie, Q.; Gao, H. F.; Niu, M.; Lu, D. Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction. Carbon 2022, 191, 227–235.

[15]

Gao, X. H.; Wu, X. Y.; Qiu, J. High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles. Adv. Electron. Mater. 2018, 4, 1700565.

[16]

Wen, F. S.; Zhang, F.; Liu, Z. Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 2011, 115, 14025–14030.

[17]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[18]

Liu, W.; Duan, P. T.; Xiong, H. W.; Su, H. L.; Zhang, X. B.; Wang, J. Z.; Yang, F. Y.; Zou, Z. Q. Multicomponent Fe-based composites derived from the oxidation and reduction of Prussian blue towards efficient electromagnetic wave absorption. J. Mater. Chem. C 2021, 9, 5505–5514.

[19]

Gao, S. T.; Chen, L. W.; Zhang, Y. C.; Shan, J. F. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber. Compos. Sci. Technol. 2021, 213, 108921.

[20]

Yan, J.; Huang, Y.; Wei, C.; Zhang, N.; Liu, P. B. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials. Compos. Part A: Appl. Sci. Manuf. 2017, 99, 121–128.

[21]

Ma, W. L.; Chen, H. H.; Hou, S. Y.; Huang, Z. Y.; Huang, Y.; Xu, S. T.; Fan, F.; Chen, Y. S. Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 2019, 11, 25369–25377.

[22]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[23]

Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J. et al. The current status of MOF and COF applications. Angew. Chem., Int. Ed. 2021, 60, 23975–24001.

[24]

Kalaj, M.; Bentz, K. C.; Ayala, S. Jr; Palomba, J. M.; Barcus, K. S.; Katayama, Y.; Cohen, S. M. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Rev. 2020, 120, 8267–8302.

[25]

Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Q. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

[26]

Qiu, S. L.; Xue, M.; Zhu, G. S. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140.

[27]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[28]

Pan, J. J.; Xia, W.; Sun, X.; Wang, T.; Li, J. J.; Sheng, L.; He, J. P. Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co, Zn) doped porous carbon nanocomposites with broadband microwave absorption. Appl. Surf. Sci. 2020, 512, 144894.

[29]

Wu, F.; Li, Q.; Liu, Z. H.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties. Carbon 2021, 182, 484–496.

[30]

Ur Rehman, S.; Sun, M. Z.; Xu, M. S.; Liu, J.; Ahmed, R.; Aslam, M. A.; Ahmad, R. A.; Bi, H. Carbonized zeolitic imidazolate framework-67/polypyrrole: A magnetic–dielectric interface for enhanced microwave absorption properties. J. Colloid Interface Sci. 2020, 574, 87–96.

[31]

Liu, Q. T.; Liu, X. F.; Feng, H. B.; Shui, H. C.; Yu, R. H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 2017, 314, 320–327.

[32]

Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

[33]

Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 2018, 6, 8904–8913.

[34]

Liu, J. B.; Gong, H. S.; Ye, G. L.; Fei, H. L. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022, 41, 1703–1726.

[35]

Gao, T.; Zhu, Z. Y.; Li, Y. X.; Hu, H. H.; Rong, H. W.; Liu, W. W.; Yang, T.; Zhang, X. F. Highly efficient electromagnetic absorption on ZnN4-based MOFs-derived carbon composites. Carbon 2021, 177, 44–51.

[36]

Zhao, Y. Z.; Wang, W.; Wang, J. N.; Zhai, J. J.; Lei, X. Y.; Zhao, W.; Li, J. N.; Yang, H. W.; Tian, J. X.; Yan, J. F. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance. Carbon 2021, 173, 1059–1072.

[37]

Song, P.; Chen, C. X.; Shen, X. P.; Zeng, S. P.; Premlatha, S.; Ji, Z. Y.; Zhai, L. Z.; Yuan, A. H.; Liu, Q. Metal-organic frameworks-derived carbon modified wood carbon monoliths as three-dimensional self-supported electrodes with boosted electrochemical energy storage performance. J. Colloid Interface Sci. 2022, 620, 376–387.

[38]

Liu, P. B.; Gao, S.; Chen, C.; Zhou, F. T.; Meng, Z. Y.; Huang, Y.; Wang, Y. Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 2020, 169, 276–287.

[39]

Liang, X. H.; Quan, B.; Ji, G. B.; Liu, W.; Cheng, Y.; Zhang, B. S.; Du, Y. W. Novel nanoporous carbon derived from metal-organic frameworks with tunable electromagnetic wave absorption capabilities. Inorg. Chem. Front. 2016, 3, 1516–1526.

[40]

Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

[41]

Chen, J. B.; Zheng, J.; Wang, F.; Huang, Q. Q.; Ji, G. B. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 2021, 174, 509–517.

[42]

Zhao, H. H.; Han, X. J.; Li, Z. N.; Liu, D. W.; Wang, Y. H.; Wang, Y.; Zhou, W.; Du, Y. C. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J. Colloid Interface Sci. 2018, 528, 174–183.

[43]

Zhang, X.; Xu, J.; Liu, X. Y.; Zhang, S.; Yuan, H. R.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon 2019, 155, 233–242.

[44]

Hu, Q. M.; Yang, R. L.; Yang, S. D.; Huang, W. B.; Zeng, Z. P.; Gui, X. C. Metal-organic framework-derived core–shell nanospheres anchored on Fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 10577–10587.

[45]

Yan, J.; Huang, Y.; Zhang, X. Y.; Gong, X.; Chen, C.; Nie, G. D.; Liu, X. D.; Liu, P. B. MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber. Nano-Micro Lett. 2021, 13, 114.

[46]

Qian, S. B.; Liu, G.; Yan, M.; Wu, C. Lightweight, self-cleaning and refractory FeCo@MoS2 PVA aerogels: From electromagnetic wave-assisted synthesis to flexible electromagnetic wave absorption. Rare Met. 2023, 42, 1294–1305.

Nano Research
Pages 6785-6794
Cite this article:
Lou Y, Li J, Li X, et al. Single-atom Zn confined in hierarchical hollow microstructure as an acid/base-resistant microwave absorption materials. Nano Research, 2024, 17(8): 6785-6794. https://doi.org/10.1007/s12274-024-6689-z
Topics:

470

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 March 2024
Revised: 05 April 2024
Accepted: 06 April 2024
Published: 01 June 2024
© Tsinghua University Press 2024
Return