AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MoSx nanowire networks derived from [Mo3S13]2− clusters for efficient electrocatalytic hydrogen evolution

Haoxuan Yu1,§Junan Pan1,§Kang Chen1Wang Chao3Zechao Zhuang2( )Sizhuo Feng3Jianmei Chen1Lingbin Xie3Longlu Wang1( )Qiang Zhao1,3( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

§ Haoxuan Yu and Junan Pan contributed equally to this work.

Show Author Information

Graphical Abstract

MoSx nanowire networks derived from [Mo3S13]2− clusters expose abundant terminal disulfide sites, which dynamically convert into Mo3+ hydride species as high-activity catalytic sites for efficient electrocatalytic hydrogen evolution.

Abstract

Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction (HER) performance of molybdenum sulfide (MoS2) and unraveling its structure−activity relationship. By leveraging transition molybdenum polysulfide clusters as functional units for multi-level ordering, we successfully designed and synthesized MoSx nanowire networks derived from [Mo3S13]2− clusters via evaporation-induced self-assembly, which exhibit enhanced HER activity attributed to a high density of active sites and dynamic evolution behavior under cathodic potentials. MoSx nanowire networks electrode yields a current density of 100 mA·cm−2 at 142 mV in 0.5 M H2SO4. This work provides an attractive prospect for optimizing catalysts at the sub-nano scale and offers insights into a strategy for designing catalysts in various gas evolution reactions.

Electronic Supplementary Material

Download File(s)
6691_ESM.pdf (2 MB)

References

[1]

Xie, L. B.; Wang, L. L.; Liu, X.; Zhao, W. W.; Liu, S. J.; Huang, X.; Zhao, Q. Tetra-coordinated W2S3 for efficient dual-pH hydrogen production. Angew. Chem., Int. Ed. 2024, 63, e202316306.

[2]

Son, E.; Lee, S.; Seo, J.; Kim, U.; Kim, S. H.; Baik, J. M.; Han, Y. K.; Park, H. Engineering the local atomic configuration in 2H TMDs for efficient electrocatalytic hydrogen evolution. ACS Nano 2023, 17, 10817–10826.

[3]

Wang, F. S.; Xie, L. B.; Sun, N.; Zhi, T.; Zhang, M. Y.; Liu, Y.; Luo, Z. Z.; Yi, L. H.; Zhao, Q.; Wang, L. L. Deformable catalytic material derived from mechanical flexibility for hydrogen evolution reaction. Nano-Micro Lett. 2024, 16, 32.

[4]

Deng, Q. B.; Li, Z. W.; Huang, R.; Li, P. F.; Gomaa, H.; Wu, S.; An, C. H.; Hu, N. Research progress of transition-metal dichalcogenides for the hydrogen evolution reaction. J. Mater. Chem. A 2023, 11, 24434–24453.

[5]

Yu, H. X.; Pan, J. N.; Zhang, Y. X.; Wang, L. L.; Ji, H. C.; Xu, K. Y.; Zhi, T.; Zhuang, Z. C. Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution. Nano Res. 2024, 17, 4782-4789.

[6]

Su, H.; Pan, X. D.; Li, S. Q.; Zhang, H.; Zou, R. Q. Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction. Carbon Energy 2023, 5, e296.

[7]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem. 2024, 136, e202319618.

[8]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[9]

Meng, C.; Gao, Y. F.; Zhou, Y.; Sun, K.; Wang, Y. M.; Han, Y.; Zhao, Q. Q.; Chen, X. M.; Hu, H.; Wu, M. B. P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res. 2023, 16, 6228–6236.

[10]

Wang, Y. J.; Wang, M.; Yang, Y. Q.; Kong, D. Y.; Meng, C.; Zhang, D. Q.; Hu, H.; Wu, M. B. Potential technology for seawater electrolysis: Anion-exchange membrane water electrolysis. Chem Catal. 2023, 3, 100643.

[11]

Chae, S. Y.; Yoon, N.; Joo, O. S.; Park, E. D. Monitoring transformations of catalytic active states in photocathodes based on MoS x layers on CuInS2 using in operando Raman spectroscopy. Angew. Chem., Int. Ed. 2023, 62, e202215227.

[12]

Seo, B.; Jung, G. Y.; Lee, S. J.; Baek, D. S.; Sa, Y. J.; Ban, H. W.; Son, J. S.; Park, K.; Kwak, S. K.; Joo, S. H . Monomeric MoS42−-derived polymeric chains with active molecular units for efficient hydrogen evolution reaction. ACS Catal. 2020, 10, 652–662.

[13]

Tessarek, C.; Gridenco, O.; Wiesing, M.; Müssener, J.; Figge, S.; Sebald, K.; Gutowski, J.; Eickhoff, M. Controlled laser-thinning of MoS2 nanolayers and transformation to amorphous MoO x for 2D monolayer fabrication. ACS Appl. Nano Mater. 2020, 3, 7490–7498.

[14]

Alam, M. H.; Chowdhury, S.; Roy, A.; Wu, X.; Ge, R.; Rodder, M. A.; Chen, J.; Lu, Y.; Stern, C.; Houben, L. et al. Wafer-scalable single-layer amorphous molybdenum trioxide. ACS Nano 2022, 16, 3756–3767.

[15]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[16]

Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

[17]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[18]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano-to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[19]

Yang, J. Y.; Chai, C. L.; Jiang, C.; Liu, L.; Xi, J. Y. MoS2-CoS2 heteronanosheet arrays coated on porous carbon microtube textile for overall water splitting. J. Power Sources 2021, 514, 230580.

[20]

Sun, C.; Wang, L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

[21]

Liu, Z. P.; Wang, K. W.; Li, Y. J.; Yuan, S. S.; Huang, G. Q.; Li, X. T.; Li, N. Activation engineering on metallic 1T-MoS2 by constructing in-plane heterostructure for efficient hydrogen generation. Appl. Catal. B: Environ. 2022, 300, 120696.

[22]

Ghosh, R.; Papnai, B.; Chen, Y. S.; Yadav, K.; Sankar, R.; Hsieh, Y. P.; Hofmann, M.; Chen, Y. F. Exciton manipulation for enhancing photoelectrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Adv. Mater. 2023, 35, 2210746.

[23]

Li, B. J.; Nie, K. K.; Zhang, Y. J.; Yi, L. X.; Yuan, Y. L.; Chong, S. K.; Liu, Z. Q.; Huang, W. Engineering single-layer hollow structure of transition metal dichalcogenides with high 1T-phase purity for hydrogen evolution reaction. Adv. Mater. 2023, 35, 2303285.

[24]

Muthu, J.; Khurshid, F.; Chin, H. T.; Yao, Y. C.; Hsieh, Y. P.; Hofmann, M. The HER performance of 2D materials is underestimated without morphology correction. Chem. Eng. J. 2023, 465, 142852.

[25]

Van Nguyen, T.; Tekalgne, M.; Nguyen, T. P.; Van Le, Q.; Ahn, S. H.; Kim, S. Y. Electrocatalysts based on MoS2 and WS2 for hydrogen evolution reaction: An overview. Battery Energy 2023, 2, 20220057.

[26]

Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

[27]

Wang, X.; Wu, J.; Zhang, Y. W.; Sun, Y.; Ma, K. K.; Xie, Y.; Zheng, W. H.; Tian, Z.; Kang, Z.; Zhang, Y. Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: From aggregated to atomic configuration. Adv. Mater. 2023, 35, 2206576.

[28]

Ding, S. S.; Zhou, B. X.; Chen, C. M.; Huang, Z.; Li, P. C.; Wang, S. Y.; Cao, G. Z.; Zhang, M. Sulfur-rich (NH4)2Mo3S13 as a highly reversible anode for sodium/potassium-ion batteries. ACS Nano 2020, 14, 9626–9636.

[29]

Batool, S.; Nandan, S. P.; Myakala, S. N.; Rajagopal, A.; Schubert, J. S.; Ayala, P.; Naghdi, S.; Saito, H.; Bernardi, J.; Streb, C. et al. Surface anchoring and active sites of [Mo3S13]2− clusters as co-catalysts for photocatalytic hydrogen evolution. ACS Catal. 2022, 12, 6641–6650.

[30]

Müller, A.; Sarkar, S.; Bhattacharyya, R. G.; Pohl, S.; Dartmann, M. Directed synthesis of [Mo3S13]2−, an isolated cluster containing sulfur atoms in three different states of bonding. Angew. Chem., Int. Ed. 1978, 17, 535.

[31]

Yuan, M. W.; Yao, H. Q.; Xie, L. X.; Liu, X. W.; Wang, H.; Islam, S. M.; Shi, K. R.; Yu, Z. H.; Sun, G. B.; Li, H. F. et al. Polypyrrole-Mo3S13: An efficient sorbent for the capture of Hg2+ and highly selective extraction of Ag+ over Cu2+. J. Am. Chem. Soc. 2020, 142, 1574–1583.

[32]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[33]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[34]

Gong, H. L.; Bao, C. L.; Luo, X.; Yu, Y. S.; Yang, W. W. Reusable electrochemical sensor for quinine detection via β-cyclodextrin-based indicator displacement assay. Microchem. J. 2024, 198, 110109.

[35]

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

[36]

Li, L. L.; Tian, F. Y.; Qiu, L. Y.; Wu, F. Y.; Yang, W. W.; Yu, Y. S. Recent progress on ruthenium-based electrocatalysts towards the hydrogen evolution reaction. Catalysts 2023, 13, 1497.

[37]

Padmajan Sasikala, S.; Singh, Y.; Bing, L.; Yun, T.; Koo, S. H.; Jung, Y.; Kim, S. O. Longitudinal unzipping of 2D transition metal dichalcogenides. Nat. Commun. 2020, 11, 5032.

[38]

Zhao, Y. F.; Zhang, J. Q.; Xie, Y. H.; Sun, B.; Jiang, J. J.; Jiang, W. J.; Xi, S. B.; Yang, H. Y.; Yan, K.; Wang, S. J. et al. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 2021, 21, 823–832.

[39]

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

[40]

Qin, J. Y.; Xi, C.; Zhang, R.; Liu, T.; Zou, P. C.; Wu, D. Y.; Guo, Q. J.; Mao, J.; Xin, H. L.; Yang, J. Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N-C for pH-universal hydrogen evolution electrocatalysis. ACS Catal. 2021, 11, 4486–4497.

[41]

Kwon, I. S.; Kwak, I. H.; Debela, T. T.; Abbas, H. G.; Park, Y. C.; Ahn, J. P.; Park, J.; Kang, H. S. Se-rich MoSe2 nanosheets and their superior electrocatalytic performance for hydrogen evolution reaction. ACS Nano 2020, 14, 6295–6304.

[42]

Duan, H. L.; Wang, C.; Li, G. N.; Tan, H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis. Angew. Chem., Int. Ed. 2021, 60, 7251–7258.

[43]

Guo, Y. N.; Tang, J.; Henzie, J.; Jiang, B.; Xia, W.; Chen, T.; Bando, Y.; Kang, Y. M.; Hossain, M. S. A.; Sugahara, Y. et al. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 2020, 14, 4141–4152.

[44]

Li, Y.; Zuo, S. W.; Li, Q. H.; Wu, X.; Zhang, J.; Zhang, H. B.; Zhang, J. Vertically aligned MoS2 with in-plane selectively cleaved Mo-S bond for hydrogen production. Nano Lett. 2021, 21, 1848–1855.

[45]

Mathankumar, M.; Karthick, K.; Nanda Kumar, A. K.; Kundu, S.; Balasubramanian, S. Aiding time-dependent laser ablation to direct 1T-MoS2 for an improved hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2021, 9, 14744–14755.

[46]

Li, Z. G.; Li, C. L.; Chen, J. W.; Xing, X.; Wang, Y. Q.; Zhang, Y.; Yang, M. S.; Zhang, G. X. Confined synthesis of MoS2 with rich co-doped edges for enhanced hydrogen evolution performance. J. Energy Chem. 2022, 70, 18–26.

[47]

Li, Z. D.; Yan, X. X.; He, D.; Hu, W. H.; Younan, S.; Ke, Z. J.; Patrick, M.; Xiao, X. H.; Huang, J. E.; Wu, H. J. et al. Manipulating coordination structures of mixed-valence copper single atoms on 1T-MoS2 for efficient hydrogen evolution. ACS Catal. 2022, 12, 7687–7695.

[48]

Zhang, Y. C.; Yang, T. R.; Li, J.; Zhang, Q.; Li, B. Z.; Gao, M. Construction of Ru, O Co-doping MoS2 for hydrogen evolution reaction electrocatalyst and surface-enhanced Raman scattering substrate: High-performance, recyclable, and durability improvement. Adv. Funct. Mater. 2023, 33, 2210939.

[49]

Bau, J. A.; Emwas, A. H.; Nikolaienko, P.; Aljarb, A. A.; Tung, V.; Rueping, M. Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nat. Catal. 2022, 5, 397–404.

[50]

Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 2016, 15, 640–646.

[51]

Gao, M. Y.; Tian, F. Y.; Zhang, X.; Chen, Z. Y.; Yang, W. W.; Yu, Y. S. Improved plasmonic hot-electron capture in Au nanoparticle/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 2023, 15, 129.

[52]

Guo, X.; Qiu, L. Y.; Li, M. G.; Tian, F. Y.; Ren, X.; Jie, S.; Geng, S.; Han, G. H.; Huang, Y. R.; Song, Y. et al. Accelerating the generation of NiOOH by in- situ surface phosphating nickel sulfide for promoting the proton-coupled electron transfer kinetics of urea electrolysis. Chem. Eng. J. 2024, 483, 149264.

Nano Research
Pages 6910-6915
Cite this article:
Yu H, Pan J, Chen K, et al. MoSx nanowire networks derived from [Mo3S13]2− clusters for efficient electrocatalytic hydrogen evolution. Nano Research, 2024, 17(8): 6910-6915. https://doi.org/10.1007/s12274-024-6691-5
Topics:

340

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 February 2024
Revised: 06 April 2024
Accepted: 08 April 2024
Published: 31 May 2024
© Tsinghua University Press 2024
Return