AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Versatile zeolite overlayer on ZnO film enabling high-performance bilayer NO2 sensoring

Tianshuang Wang1,2,3,§Yiheng Li1,§Dan Li1Peng Sun2,3( )Xiaowei Song1( )Geyu Lu2,3Jihong Yu1,3( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China

§ Tianshuang Wang and Yiheng Li contributed equally to this work.

Show Author Information

Graphical Abstract

A facile strategy using Pd-PdO clusters-encapsulated zeolite as functional overlayer on ZnO sensing film has been proposed to fabricate high-performance bilayer NO2 sensor with humidity-independent properties.

Abstract

Bilayer structure with functional overlayer has been commonly adopted to resolve the issue of moisture poisoning in chemiresistors. However, the conventional overlayers always suffer from blocking access of gas molecules to sensing layer due to lacking porosity and deteriorated adsorption capability. Herein, taking advantages of the well-defined porous structure and hydrophobic nature of pure silica zeolite, we assembled an overlayer of Pd-PdO clusters-encapsulated mesoporous silicalite-1 (MFI) zeolite (named M-S-1) on ZnO sensing layer, to prevent moisture poisoning, and enhance gas diffusion and adsorption capabilities. The inherent capability of MFI zeolite to incorporate monodispersed nanometric (ca. 3 nm) Pd-PdO cluster in its void space is of great importance for the NO2 adsorption. The Pd-PdO@M-S-1 overlayer can attain negligible moisture interference to the ZnO layer without significantly altering the gas selectivity and baseline resistance, and enhance gas response. Consequently, the Pd-PdO@M-S-1/ZnO bilayer sensor can ultra-selectively (Snitrogen dioxide/Sinterference gas > 4), and ultra-stably detect trace level of NO2 (9.5 ppb) at low temperature (370 K) under high levels of humidity (90% RH). This work exemplifies a next-generation solution to design bilayer sensors using zeolite overlayer for eliminating the humidity dependence of the gas-sensing properties.

Electronic Supplementary Material

Download File(s)
6695_ESM.pdf (3.7 MB)

References

[1]
https://www.epa.gov/no2-pollution/basic-information-about-no2#Effects (accessed Jul 25, 2023).
[2]

Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592.

[3]

Shang, Y.; Sun, Z. W.; Cao, J. J.; Wang, X. M.; Zhong, L. J.; Bi, X. H.; Li, H.; Liu, W. X.; Zhu, T.; Huang, W. Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environ. Int. 2013, 54, 100–111.

[4]

Khan, M. A. H.; Rao, M. V.; Li, Q. L. Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 2019, 19, 905.

[5]

Wang, B.; Li, W. J.; Lu, Q.; Zhang, Y. Y.; Yu, H.; Huang, L. C.; Wang, T.; Liang, X. S.; Liu, F. M.; Liu, F. M. et al. Machine learning-assisted development of sensitive electrode materials for mixed potential-type NO2 gas sensors. ACS Appl. Mater. Interfaces 2021, 13, 50121–50131.

[6]

Sun, M. Q.; Wang, M. Y.; Ge, C. X.; Huang, J. R.; Li, Y. F.; Yan, P. J.; Wang, M. S.; Lei, S. Y.; Bai, L.; Qiao, G. J. Au-doped ZnO@ZIF-7 core–shell nanorod arrays for highly sensitive and selective NO2 detection. Sens. Actuators B: Chem. 2023, 384, 133632.

[7]

Kim, J. H.; Lee, J. H.; Kim, J. Y.; Mirzaei, A.; Kim, H. W.; Kim, S. S. Enhancement of CO and NO2 sensing in n-SnO2-p-Cu2O core–shell nanofibers by shell optimization. J. Hazard. Mater. 2019, 376, 68–82.

[8]

Lim, K.; Jo, Y. M.; Yoon, J. W.; Kim, J. S.; Lee, D. J.; Moon, Y. K.; Yoon, J. W.; Kim, J. H.; Choi, H. J.; Lee, J. H. A transparent nanopatterned chemiresistor: Visible-light plasmonic sensor for trace-level NO2 detection at room temperature. Small 2021, 17, 2100438.

[9]

Purbia, R.; Kwon, Y. M.; Kim, H. D.; Lee, Y. S.; Shin, H.; Baik, J. M. Zero-dimensional heterostructures: N-doped graphene dots/SnO2 for ultrasensitive and selective NO2 gas sensing at low temperatures. J. Mater. Chem. A 2020, 8, 11734–11742.

[10]

Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 50, 2738–2741.

[11]

Mao, D.; Yao, J. X.; Lai, X. Y.; Yang, M.; Du, J.; Wang, D. Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small 2011, 7, 578–582.

[12]

Koziej, D.; Bârsan, N.; Shimanoe, K.; Yamazoe, N.; Szuber, J.; Weimar, U. Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol. Sens. Actuators B: Chem. 2006, 118, 98–104.

[13]

Gurlo, A.; Riedel, R. In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angew. Chem., Int. Ed. 2007, 46, 3826–3848.

[14]

Jeong, S. Y.; Moon, Y. K.; Kim, J. K.; Park, S. W.; Jo, Y. K.; Kang, Y. C.; Lee, J. H. A general solution to mitigate water poisoning of oxide chemiresistors: Bilayer sensors with Tb4O7 overlayer. Adv. Funct. Mater. 2021, 31, 2007895.

[15]

Großmann, K.; Wicker, S.; Weimar, U.; Barsan, N. Impact of Pt additives on the surface reactions between SnO2, water vapour, CO and H2; an operando investigation. Phys. Chem. Chem. Phys. 2013, 15, 19151–19158.

[16]

Li, J.; Sun, Y. J.; Tong, Z. M.; Zhao, Z. T.; Zhang, W. D.; Hu, J.; Chen, L. The controllable synthesis and enhanced gas sensing performances of AuNP-modified ZnSnO3 hollow nanocubes toward highly sensitive toluene detection. New J. Chem. 2022, 46, 14363–14374.

[17]

Yang, D. J.; Kamienchick, I.; Youn, D. Y.; Rothschild, A.; Kim, I. D. Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 2010, 20, 4258–4264.

[18]

Sakai, Y.; Kadosaki, M.; Matsubara, I.; Itoh, T. Preparation of total VOC sensor with sensor-response stability for humidity by noble metal addition to SnO2. J. Ceram. Soc. Japan 2009, 117, 1297–1301.

[19]

Shin, H.; Kim, D. H.; Jung, W.; Jang, J. S.; Kim, Y. H.; Lee, Y.; Chang, K.; Lee, J.; Park, J.; Namkoong, K. et al. Surface activity-tuned metal oxide chemiresistor: Toward direct and quantitative halitosis diagnosis. ACS Nano 2021, 15, 14207–14217.

[20]

Korotcenkov, G.; Cho, B. K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B: Chem. 2017, 244, 182–210.

[21]

Alenezy, E. K.; Sabri, Y. M.; Kandjani, A. E.; Korcoban, D.; Abdul Haroon Rashid, S. S. A.; Ippolito, S. J.; Bhargava, S. K. Low-temperature hydrogen sensor: Enhanced performance enabled through photoactive Pd-decorated TiO2 colloidal crystals. ACS Sens. 2020, 5, 3902–3914.

[22]

Jeong, S. Y.; Yoon, J. W.; Kim, T. H.; Jeong, H. M.; Lee, C. S.; Chan Kang, Y.; Lee, J. H. Ultra-selective detection of sub-ppm-level benzene using Pd-SnO2 yolk-shell micro-reactors with a catalytic Co3O4 overlayer for monitoring air quality. J. Mater. Chem. A 2017, 5, 1446–1454.

[23]

Degler, D.; Pereira de Carvalho, H. W.; Kvashnina, K.; Grunwaldt, J. D.; Weimar, U.; Barsan, N. Structure and chemistry of surface-doped Pt:SnO2 gas sensing materials. RSC Adv. 2016, 6, 28149–28155.

[24]

Kang, J. G.; Park, J. S.; Lee, H. J. Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHO. Sens. Actuators B: Chem. 2017, 248, 1011–1016.

[25]

Shin, H.; Jung, W. G.; Kim, D. H.; Jang, J. S.; Kim, Y. H.; Koo, W. T.; Bae, J.; Park, C.; Cho, S. H.; Kim, B. J. et al. Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping. ACS Nano 2020, 14, 11394–11405.

[26]

Ueda, T.; Boehme, I.; Hyodo, T.; Shimizu, Y.; Weimar, U.; Barsan, N. Enhanced NO2-sensing properties of Au-loaded porous In2O3 gas sensors at low operating temperatures. Chemosensors 2020, 8, 72.

[27]

Ueda, T.; Boehme, I.; Hyodo, T.; Shimizu, Y.; Weimar, U.; Barsan, N. Effects of gas adsorption properties of an Au-loaded porous In2O3 sensor on NO2-sensing properties. ACS Sens. 2021, 6, 4019–4028.

[28]

Qiu, L.; Zhang, S. D.; Huang, J. B.; Wang, C. H.; Zhao, R. Y.; Qu, F. D.; Wang, P.; Yang, M. H. Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sens. Actuators B: Chem. 2020, 308, 127520.

[29]

Kim, T. H.; Jeong, S. Y.; Moon, Y. K.; Lee, J. H. Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres. Sens. Actuators B: Chem. 2019, 301, 127140.

[30]

Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng.: B 2018, 229, 206–217.

[31]

Choi, H. J.; Chung, J. H.; Yoon, J. W.; Lee, J. H. Highly selective, sensitive, and rapidly responding acetone sensor using ferroelectric ε-WO3 spheres doped with Nb for monitoring ketogenic diet efficiency. Sens. Actuators B: Chem. 2021, 338, 129823.

[32]

Güntner, A. T.; Abegg, S.; Wegner, K.; Pratsinis, S. E. Zeolite membranes for highly selective formaldehyde sensors. Sens. Actuators B: Chem. 2018, 257, 916–923.

[33]

Van den Broek, J.; Abegg, S.; Pratsinis, S. E.; Güntner, A. T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019, 10, 4220.

[34]

Van den Broek, J.; Bischof, D.; Derron, N.; Abegg, S.; Gerber, P. A.; Güntner, A. T.; Pratsinis, S. E. Screening methanol poisoning with a portable breath detector. Anal. Chem. 2021, 93, 1170–1178.

[35]

Van den Broek, J.; Güntner, A. T.; Pratsinis, S. E. Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sens. 2018, 3, 677–683.

[36]

Van den Broek, J.; Mochalski, P.; Königstein, K.; Ting, W. C.; Unterkofler, K.; Schmidt-Trucksäss, A.; Mayhew, C. A.; Güntner, A. T.; Pratsinis, S. E. Selective monitoring of breath isoprene by a portable detector during exercise and at rest. Sens. Actuators B: Chem. 2022, 357, 131444.

[37]

Van den Broek, J.; Weber, I. C.; Güntner, A. T.; Pratsinis, S. E. Highly selective gas sensing enabled by filters. Mater. Horiz. 2021, 8, 661–684.

[38]

Weber, I. C.; Rüedi, P.; Šot, P.; Güntner, A. T.; Pratsinis, S. E. Handheld device for selective benzene sensing over toluene and xylene. Adv. Sci. 2022, 9, 2103853.

[39]

Jeong, S. Y.; Moon, Y. K.; Kim, T. H.; Park, S. W.; Kim, K. B.; Kang, Y. C.; Lee, J. H. A new strategy for detecting plant hormone ethylene using oxide semiconductor chemiresistors: Exceptional gas selectivity and response tailored by nanoscale Cr2O3 catalytic overlayer. Adv. Sci. 2020, 7, 1903093.

[40]

Jeong, S. Y.; Moon, Y. K.; Wang, J.; Lee, J. H. Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun. 2023, 14, 233.

[41]

Li, J. Y.; Corma, A.; Yu, J. H. Synthesis of new zeolite structures. Chem. Soc. Rev. 2015, 44, 7112–7127.

[42]

Yu, J. H.; Corma, A.; Li, Y. Functional porous materials chemistry. Adv. Mater. 2020, 32, 2006277.

[43]

Bai, R. S.; He, G. Y.; Li, L.; Zhang, T. J.; Li, J. Y.; Wang, X. X.; Wang, X. M.; Zou, Y. C.; Mei, D. H.; Corma, A. et al. Encapsulation of palladium carbide subnanometric species in zeolite boosts highly selective semihydrogenation of alkynes. Angew. Chem., Int. Ed. 2023, 62, e202313101.

[44]

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

[45]

Wang, N.; Sun, Q. M.; Yu, J. H. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts. Adv. Mater. 2019, 31, 1803966.

[46]

Han, X. Y.; Xia, H. C.; Tu, W. F.; Wei, Y. F.; Xue, D. P.; Li, M. H.; Yan, W. F.; Zhang, J. N.; Han, Y. F. Zeolite-confined Fe-site catalysts for the hydrogenation of CO2 to produce high-value chemicals. Chem. Res. Chin. Univ. 2024, 40, 78–95.

[47]

Qu, Z. Q.; Zhang, T. J.; Yin, X. C.; Zhang, J. Y.; Xiong, X. Y.; Sun, Q. M. Zeolite-encaged ultrasmall Pt-Zn species with trace amount of Pt for efficient propane dehydrogenation. Chem. Res. Chin. Univ. 2023, 39, 870–876.

[48]

Wang, T. S.; Chu, Y. Y.; Li, X.; Liu, Y. H.; Luo, H.; Zhou, D. L.; Deng, F.; Song, X. W.; Lu, G. Y.; Yu, J. H. Zeolites as a class of semiconductors for high-performance electrically transduced sensing. J. Am. Chem. Soc. 2023, 145, 5342–5352.

[49]

Deng, W. H.; Yao, M. S.; Zhang, M. Y.; Tsujimoto, M.; Otake, K.; Wang, B.; Li, C. S.; Xu, G.; Kitagawa, S. Non-contact real-time detection of trace nitro-explosives by MOF composites visible-light chemiresistor. Natl. Sci. Rev. 2022, 9, nwac143.

[50]

Zheng, R.; Fu, Z. H.; Deng, W. H.; Wen, Y. Y.; Wu, A. Q.; Ye, X. L.; Xu, G. The growth mechanism of a conductive MOF thin film in spray-based layer-by-layer liquid phase epitaxy. Angew. Chem., Int. Ed. 2022, 61, e202212797.

[51]

Liang, T. T.; Dai, Z. F.; Liu, Y. D.; Zhang, X.; Zeng, H. B. Suppression of Sn2+ and lewis acidity in SnS2/black phosphorus heterostructure for ppb-level room temperature NO2 gas sensor. Sci. Bull. 2021, 66, 2471–2478.

[52]

Poyraz, A. S.; Kuo, C. H.; Biswas, S.; King'ondu, C. K.; Suib, S. L. A general approach to crystalline and monomodal pore size mesoporous materials. Nat. Commun. 2013, 4, 2952.

[53]

Zhang, Q.; Li, J. Y.; Wang, X. X.; He, G.; Li, L.; Xu, J.; Mei, D. H.; Terasaki, O.; Yu, J. H. Silanol-engineered nonclassical growth of zeolite nanosheets from oriented attachment of amorphous protozeolite nanoparticles. J. Am. Chem. Soc. 2023, 145, 21231–21241.

[54]

Peng, H. G.; Dong, T.; Yang, S. Y.; Chen, H.; Yang, Z. Z.; Liu, W. M.; He, C.; Wu, P.; Tian, J. S.; Peng, Y. et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat. Commun. 2022, 13, 295.

[55]

Koziej, D.; Hübner, M.; Barsan, N.; Weimar, U.; Sikora, M.; Grunwaldt, J. D. Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors. Phys. Chem. Chem. Phys. 2009, 11, 8620–8625.

[56]

Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas-sensor applications: A review. Nano-Micro Lett. 2015, 7, 97–120.

[57]

Li, D.; Ding, Q. Z.; Hao, D. P.; Han, J. F.; Yang, G. J.; Pang, L.; Guo, Y. B.; Yu, J. H.; Li, T. Na cocations and hydrothermal aging cooperatively boost the regeneration of phosphorus-poisoned Pd/SSZ-13 for passive NO x adsorption. Environ. Sci. Technol. 2023, 57, 19956–19964.

[58]

Zhang, Q.; Gao, S. Q.; Yu, J. H. Metal sites in zeolites: Synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 6039–6106.

Nano Research
Pages 9193-9201
Cite this article:
Wang T, Li Y, Li D, et al. Versatile zeolite overlayer on ZnO film enabling high-performance bilayer NO2 sensoring. Nano Research, 2024, 17(10): 9193-9201. https://doi.org/10.1007/s12274-024-6695-1
Topics:
Part of a topical collection:

450

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 01 February 2024
Revised: 04 April 2024
Accepted: 08 April 2024
Published: 23 May 2024
© Tsinghua University Press 2024
Return