AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergistic Ru/RuO2 heterojunctions stabilized by carbon coating as efficient and stable bifunctional electrocatalysts for acidic overall water splitting

Man WuYuying FanYang HuangDongxu WangYing XieAiping Wu( )Chungui Tian( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

Porous Ru/RuO2 hollow nanospheres with nitrogen-doped carbon coating are designed. The Ru/RuO2/NC exhibits remarkable acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance, and shows outstanding stability during continuous operation for 100 h. Impressively, an acid electrolyzer assembled with the bifunctional Ru/RuO2/NC requires low cell voltages of 1.46 and 1.76 V to achieve 10 and 100 mA·cm−2, respectively.

Abstract

The development of highly active and stable acidic water oxidation electrocatalysts is of great significant for promoting the industrial application of proton exchange membrane electrolyzers. Ru-based catalysts have broad application prospects in acidic water oxidation, but their limitations in stability and activity hinder their further application. Herein, a nitrogen-doped carbon (NC) coated porous Ru/RuO2 heterojunctional hollow sphere (Ru/RuO2/NC) is designed as high-active and stable bifunctional electrocatalyst for acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In synthesis, the key is to use mesoporous polydopamine spheres as a template for forming hollow spheres, a source of NC coating and a reducing agent for forming Ru/RuO2 heterojunction. The Ru/RuO2 heterojunction adjusts the electronic structure of Ru active sites, optimizing the adsorption of intermediate species. Furthermore, the NC coating and the interaction between NC and Ru/RuO2 effectively prevent Ru from over-oxidation and dissolution. The porous hollow structure provides more exposed active sites and promotes mass transfer. Impressively, Ru/RuO2/NC exhibits outstanding OER and HER performance with low overpotentials of 211 and 32 mV at 10 mA·cm−2, respectively, and shows excellent stability. The acid water splitting electrolyzer, based on the bifunctional Ru/RuO2/NC, requires low cell voltages of 1.46 and 1.76 V at 10 and 100 mA·cm−2, respectively, with good stability for over 100 h operation, surpassing Pt/C||RuO2 and most of the reported catalysts.

Electronic Supplementary Material

Download File(s)
6696_ESM.pdf (3.1 MB)

References

[1]

Qin, Q.; Jang, H.; Chen, L. L.; Nam, G.; Liu, X. E.; Cho, J. Low loading of Rh x P and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv. Energy Mater. 2018, 8, 1801478.

[2]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017, 355, eaad4998.

[3]

Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

[4]

Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.

[5]

Yuan, S.; Zhao, C. F.; Cai, X. Y.; An, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Prog. Energy Combust. Sci. 2023, 96, 101075.

[6]

Chen, Z. C.; Guo, L.; Pan, L.; Yan, T. Q.; He, Z. X.; Li, Y.; Shi, C. X.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers. Adv. Energy Mater. 2022, 12, 2103670.

[7]

Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

[8]

Fan, Z. L.; Ji, Y. J.; Shao, Q.; Geng, S. Z.; Zhu, W. X.; Liu, Y.; Liao, F.; Hu, Z. W.; Chang, Y. C.; Pao, C. W. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule 2021, 5, 3221–3234.

[9]

Zuo, S. W.; Wu, Z. P.; Zhang, H. B.; Lou, X. W. Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 2022, 12, 2103383.

[10]

Wu, Z. P.; Zhang, H. B.; Zuo, S. W.; Wang, Y.; Zhang, S. L.; Zhang, J.; Zang, S. Q.; Lou, X. W. Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution. Adv. Mater. 2021, 33, 2103004.

[11]

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy. 2020, 78, 105270.

[12]

Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

[13]

Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

[14]

Lin, Y. C.; Tian, Z. Q.; Zhang, L. H.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

[15]

Cui, X. J.; Ren, P. J.; Ma, C.; Zhao, J.; Chen, R. X.; Chen, S. M.; Rajan, N. P.; Li, H. B.; Yu, L.; Tian, Z. Q. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 2020, 32, 1908126.

[16]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[17]

Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

[18]

Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Li, Z. H.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: Enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem., Int. Ed. 2020, 59, 14664–14670.

[19]

Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeO x as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

[20]

Xia, Z. Y.; Deng, B. L.; Wang, Y. J.; Jiang, Z. Q.; Jiang, Z. J. Synergistic co-doping induced high catalytic activities of La/Fe doped Co3O4 towards oxygen reduction/evolution reactions for Zn-air batteries. J. Mater. Chem. A 2022, 10, 23483–23493.

[21]

Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 2020, 32, 1905025.

[22]

Sun, C.; Wang, P. P.; Wang, H.; Xu, C.; Zhu, J. T.; Liang, Y. X.; Su, Y.; Jiang, Y. N.; Wu, W. Q.; Fu, E. G. et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 2019, 12, 1613–1618

[23]

Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.

[24]

Yang, P. P.; Li, J.; Vlachos, D. G.; Caratzoulas, S. Tuning active site flexibility by defect engineering of graphene ribbon edge-hosted Fe-N3 sites. Angew. Chem., Int. Ed. 2024, 63, e202311174.

[25]

Li, Z. J.; Jang, H.; Qin, D. N.; Jiang, X. L.; Ji, X. Q.; Kim, M. G.; Zhang, L. J.; Liu, X. E.; Cho, J. Alloy-strain-output induced lattice dislocation in Ni3FeN/Ni3Fe ultrathin nanosheets for highly efficient overall water splitting. J. Mater. Chem. A 2021, 9, 4036–4043.

[26]

Hou, Z. Q.; Cui, C. H.; Li, Y. N.; Gao, Y. J.; Zhu, D. M.; Gu, Y. F.; Pan, G. Y.; Zhu, Y. Q.; Zhang, T. Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 2023, 35, 2209876.

[27]

Yang, X. B.; Wang, Y. Y.; Tong, X. L.; Yang, N. J. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261.

[28]

Wang, H. B.; Zhang, H.; Huang, Y.; Wang, H. Y.; Ozden, A.; Yao, K. L.; Li, H. M.; Guo, Q. Y.; Liu, Y. C.; Vomiero, A. et al. Strain in copper/ceria heterostructure promotes electrosynthesis of multicarbon products. ACS Nano 2023, 17, 346–354.

[29]

Yu, X. B.; Yan, F.; Zhao, Y.; Geng, B.; Ma, X. Z.; Wu, L. L.; Zhang, X. T.; Chen, Y. J. A heterostructure of interlayer-expanded 1T phase MoS2 and spherical MoO2 for efficient and stable hydrogen evolution. Appl. Catal. B Environ. 2024, 343, 123534.

[30]

Hu, J.; Guo, T. Q.; Zhong, X. Y.; Li, J.; Mei, Y. J.; Zhang, C. X.; Feng, Y. B.; Sun, M. Z.; Meng, L. J.; Wang, Z. Y. et al. In situ reconstruction of high-entropy heterostructure catalysts for stable oxygen evolution electrocatalysis under industrial conditions. Adv. Mater. 2024, 36, 2310918

[31]

You, M. S.; Xu, Y.; He, B. B.; Zhang, J.; Gui, L. Q.; Xu, J. M.; Zhou, W.; Zhao, L. Realizing robust and efficient acidic oxygen evolution by electronic modulation of 0D/2D CeO2 quantum dots decorated SrIrO3 nanosheets. Appl. Catal. B: Environ. 2022, 315, 121579.

[32]

Kopelent, R.; Tereshchenko, A.; Guda, A.; Smolentsev, G.; Artiglia, L.; Sushkevich, V. L.; Bugaev, A.; Sadykov, I. I.; Baidya, T.; Bodnarchuk, M. et al. Enhanced reducibility of the ceria-tin oxide solid solution modifies the CO oxidation mechanism at the platinum–oxide interface. ACS Catal. 2021, 11, 9435–9449.

[33]

Jia, S. Y.; Zhang, J. C.; Liu, Q. C.; Ma, C. N.; Tang, Y. W.; Sun, H. J. Competitive adsorption of oxygen-containing intermediates on ruthenium-tin solid-solution oxides for alkaline oxygen evolution. J. Mater. Chem. A 2023, 11, 23489–23497.

[34]

Zhang, Y. X.; Dong, J.; Sun, T. T.; Zhang, X. H.; Chen, J. F.; Xu, L. B. Mo-doped mesoporous RuO2 spheres as high-performance acidic oxygen evolution reaction electrocatalyst. Small. 2024, 20, 2305889.

[35]

Xu, Y. M.; Mao, Z. X.; Zhang, J. F.; Ji, J. P.; Zou, Y.; Dong, M. Y.; Fu, B.; Hu, M. Q.; Zhang, K. D.; Chen, Z. Y. et al. Strain-modulated Ru-O covalency in Ru-Sn oxide enabling efficient and stable water oxidation in acidic solution. Angew. Chem., Int. Ed. 2024, 63, e202316029.

[36]

Long, X.; Zhao, B.; Zhao, Q. Q.; Wu, X. X.; Zhu, M. N.; Feng, R. F.; Shakouri, M.; Zhang, Y.; Xiao, X. X.; Zhang, J. J. et al. Ru-RuO2 nano-heterostructures stabilized by the sacrificing oxidation strategy of Mn3O4 substrate for boosting acidic oxygen evolution reaction. Appl. Catal. B: Environ. 2024, 343, 123559.

[37]

Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

[38]

Yan, H. H.; Jiang, Z. Q.; Deng, B. L.; Wang, Y. J.; Jiang, Z. J. Ultrathin carbon coating and defect engineering promote RuO2 as an efficient catalyst for acidic oxygen evolution reaction with super-high durability. Adv. Energy Mater. 2023, 13, 2300152.

[39]

Wang, J.; Yang, H.; Li, F.; Li, L. G.; Wu, J. B.; Liu, S. H.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Q. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271.

[40]
Liu, G. Q.; Yang, Y.; Zhang, X. L.; Li, H. H.; Yu, P. C.; Gao, M. R.; Yu, S. H. Porous tellurium-doped ruthenium dioxide nanotubes for enhanced acidic water oxidation. Small., in press, https://doi.org/10.1002/smll.202306914.
[41]

Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

[42]

Yoo, J. M.; Shin, H.; Chung, D. Y.; Sung, Y. E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res. 2022, 55, 1278–1289.

[43]

Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrO x electrocatalysts for oxygen evolution in acidic media. Chem. 2019, 5, 445–459.

[44]

Jang, J.; Sharma, M.; Choi, D.; Kang, Y. S.; Kim, Y.; Min, J.; Sung, H.; Jung, N.; Yoo, S. J. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal-carbon hybrid core–shell catalyst. ACS Appl. Mater. Interfaces 2019, 11, 27735–27742.

[45]

Yoo, T. Y.; Yoo, J. M.; Sinha, A. K.; Bootharaju, M. S.; Jung, E.; Lee, H. S.; Lee, B. H.; Kim, J.; Antink, W. H.; Kim, Y. M. et al. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis. J. Am. Chem. Soc. 2020, 142, 14190–14200.

[46]

Kim, J. Y.; Hong, D.; Lee, J. C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

[47]

Xin, H.; Lin, L.; Li, R. T.; Li, D.; Song, T. Y.; Mu, R. T.; Fu, Q.; Bao, X. H. Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal–support interactions. J. Am. Chem. Soc. 2022, 144, 4874–4882.

[48]

Ge, R. X.; Wang, Y.; Li, Z. Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K. Y.; Chen, F. G.; Zhou, J. H.; Duan, H. H. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200211.

[49]

Wu, X. K.; Wang, Z. C.; Zhang, D.; Qin, Y. N.; Wang, M. H.; Han, Y.; Zhan, T. R.; Yang, B.; Li, S. X.; Lai, J. P. et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal–support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

[50]

Liang, Q. R.; Li, Q. Z.; Xie, L.; Zeng, H.; Zhou, S.; Huang, Y. N.; Yan, M.; Zhang, X.; Liu, T. Y.; Zeng, J. et al. Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution. ACS Nano. 2022, 16, 7993–8004.

[51]

Kuznetsov, D. A.; Naeem, M. A.; Kumar, P. V.; Abdala, P. M.; Fedorov, A.; Müller, C. R. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 2020, 142, 7883–7888.

[52]

Zhang, T.; Wu, M. Y.; Yan, D. Y.; Mao, J.; Liu, H.; Hu, W. B.; Du, X. W.; Ling, T.; Qiao, S. Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy. 2018, 43, 103–109.

[53]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[54]

Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

[55]

Li, C.; Jang, H.; Kim, M. G.; Hou, L. Q.; Liu, X. E.; Cho, J. Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 307, 121204.

[56]

Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Gao, S.; Qu, C.; Tabassum, H.; Zhang, H.; Zhu, B. J.; Zou, R. Q.; Shao-Horn, Y. Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy. 2019, 58, 1–10.

[57]

Kwon, J.; Sun, S.; Choi, S.; Lee, K.; Jo, S.; Park, K.; Kim, Y. K.; Park, H. B.; Park, H. Y.; Jang, J. H. et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Adv. Mater. 2023, 35, 2300091.

Nano Research
Pages 6931-6939
Cite this article:
Wu M, Fan Y, Huang Y, et al. Synergistic Ru/RuO2 heterojunctions stabilized by carbon coating as efficient and stable bifunctional electrocatalysts for acidic overall water splitting. Nano Research, 2024, 17(8): 6931-6939. https://doi.org/10.1007/s12274-024-6696-0
Topics:

421

Views

2

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 21 February 2024
Revised: 31 March 2024
Accepted: 09 April 2024
Published: 13 May 2024
© Tsinghua University Press 2024
Return