AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Visible light promoted aerobic selective photo-oxidation of cyclohexene on LaCoxCu1−xO3 catalyst

Xu Guo1Liru Song1Wenyu Wang1Fengfeng Li1Minh Ngoc Ha1,2Jun Tang1Qiang Ling1Ping Cui1Qingping Ke1( )
College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243000, China
VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
Show Author Information

Graphical Abstract

LaCo0.7Cu0.3O3 catalysts were firstly employed as visible-light catalysts for the selective oxidation of cyclohexene to cyclohex-2-ene-1-one. Under the optimal conditions, the selectivity of cyclohex-2-ene-1-one can reach 72.2% with cyclohexene conversion of ~ 89.4% are achieved on LaCo0.7Cu0.3O3 catalysts.

Abstract

Heterogeneously catalyzed liquid oxidation of olefins with O2 provides an alternative way for synthesizing high-value added chemicals. Herein, we report a straightforward urea-redox and sol-gel process for synthesizing LaCoxCu1−xO3 for aerobic photo-oxidation of cyclohexene. Our research highlights a marked increase in the proportions of Co2+ and Cu+ species in a low chemical state, as well as enhanced visible light absorption through this method. Mechanistic investigations suggest that the catalytic process, particularly with LaCo0.7Cu0.3O3, involves a radical pathway mediated by reactive oxygen species. The presence of Cu+/Co2+ species and surface oxygen vacancies is proposed to boost O2 adsorption and activation on the catalyst, facilitating the formation of 2-cyclohexene-1-hydroperoxides. Furthermore, Cu2+/Co3+ species are thought to aid in generating cyclohexene-derived radical species. The efficient aerobic oxidation of cyclohexene on LaCo0.7Cu0.3O3 catalyst relies on the formation of reactive oxygen species and carbon radicals, facilitated by its strong visible light illumination. It achieves a cyclohexene conversion of 89.4% and selectivity to cyclohex-2-ene-1-one of 72.2%, along with stable recyclability after six reuses. The creation of nano-structured LaCoxCu1−xO3 through the urea-redox and sol-gel process offers a promising avenue for the development of highly efficient catalysts for the aerobic photo-oxidation of cyclohexene to cyclohex-2-ene-1-one in the future.

Electronic Supplementary Material

Download File(s)
6697_ESM.pdf (2 MB)

References

[1]

Xiong, C.; Liu, H.; Zhou, J.; Xu, D. J.; Liang, Y. C.; Zhou, X. T.; Xue, C.; Ji, H. B. High selective epoxidation of 2-methylpropene over a Mo-based oxametallacycle reinforced nano composite. Nano Res. 2023, 16, 209–218.

[2]

Tian, S. B.; Wang, B. X.; Gong, W. B.; He, Z. Z.; Xu, Q.; Chen, W. X.; Zhang, Q. H.; Zhu, Y. Q.; Yang, J. R.; Fu, Q. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181.

[3]

Zhao, K. Y.; Shen, Q. K.; Tao, Y.; Li, J. R.; Wang, M. L.; Li, C.; Xu, B. J. Atomically dispersed N/O-coordinated cobalt catalyst enables aerobic oxygenation of olefins under ambient conditions. ACS Catal. 2023, 13, 12591–12600.

[4]

Büker, J.; Huang, X. B.; Bitzer, J.; Kleist, W.; Muhler, M.; Peng, B. X. Synthesis of Cu single atoms supported on mesoporous graphitic carbon nitride and their application in liquid-phase aerobic oxidation of cyclohexene. ACS Catal. 2021, 11, 7863–7875.

[5]

Muhumuza, E.; Wu, P. P.; Nan, T.; Zhao, L. M.; Bai, P.; Mintova, S.; Yan, Z. F. Perovskite-type LaCoO3 as an efficient and green catalyst for sustainable partial oxidation of cyclohexane. Ind. Eng. Chem. Res. 2020, 59, 21322–21332.

[6]

Wu, Y. F.; Su, M. J.; Xiao, Y. H.; Guang, B. X.; Liu, Y. Heteropolyacid-based poly(ionic liquid)s for the selective oxidation of cyclohexene to 2-cyclohexene-1-one. Ind. Eng. Chem. Res. 2022, 61, 299–306.

[7]

Cancino, P.; Santibañez, L.; Stevens, C.; Fuentealba, P.; Audebrand, N.; Aravena, D.; Torres, J.; Martinez, S.; Kremer, C.; Spodine, E. Influence of the channel size of isostructural 3d-4f MOFs on the catalytic aerobic oxidation of cycloalkenes. New J. Chem. 2019, 43, 11057–11064.

[8]

Geiss, J.; Büker, J.; Schulte, J.; Peng, B.; Muhler, M.; Winterer, M. LaCo1− x Fe x O3 nanoparticles in cyclohexene oxidation. J. Phys. Chem. C 2023, 127, 5029–5038.

[9]

Büker, J.; Muhler, M.; Peng, B. X. Concepts of heterogeneously catalyzed liquid-phase oxidation of cyclohexene with tert-butyl hydroperoxide, hydrogen peroxide and molecular oxygen. ChemCatChem 2023, 15, e202201216.

[10]

Montjoy, D. G.; Wilson, E. A. K.; Hou, H.; Graves, J. D.; Kotov, N. A. Photocatalytic cyclohexane oxidation and epoxidation using hedgehog particles. Nat. Commun. 2023, 14, 857.

[11]

Li, N.; Jian, C. P.; Song, Y. P.; Wang, L.; Rehman, A. U.; Fu, Y. H.; Zhang, F. M.; Chen, D. L.; Zhu, W. D. Scalable synthesis of MIL-88A(Fe) for efficient aerobic oxidation of cyclohexene to 2-cyclohexene-1-ol. Mol. Catal. 2023, 535, 112899.

[12]

Rose, J. A.; Mahapatra, S.; Li, X.; Wang, C.; Chen, L.; Swick, S. M.; Herzon, S. B. Synthesis of the bis(cyclohexenone) core of (-)-lomaiviticin A. Chem. Sci. 2020, 11, 7462–7467.

[13]

Büker, J.; Alkan, B.; Chabbra, S.; Kochetov, N.; Falk, T.; Schnegg, A.; Schulz, C.; Wiggers, H.; Muhler, M.; Peng, B. X. Liquid-phase cyclohexene oxidation with O2 over spray-flame-synthesized La1− x Sr x CoO3 perovskite nanoparticles. Chem.—Eur. J. 2021, 27, 16912–16923.

[14]

Touge, T.; Nara, H.; Kida, M.; Matsumura, K.; Kayaki, Y. Convincing catalytic performance of oxo-tethered ruthenium complexes for asymmetric transfer hydrogenation of cyclic α-halogenated ketones through dynamic kinetic resolution. Org. Lett. 2021, 23, 3070–3075.

[15]

Büker, J.; Angel, S.; Salamon, S.; Landers, J.; Falk, T.; Wende, H.; Wiggers, H.; Schulz, C.; Muhler, M.; Peng, B. X. Structure-activity correlation in aerobic cyclohexene oxidation and peroxide decomposition over Co x Fe3− x O4 spinel oxides. Catal. Sci. Technol. 2022, 12, 3594–3605.

[16]

Sun, D. R.; Sun, F. X.; Deng, X. Y.; Li, Z. H. Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg. Chem. 2015, 54, 8639–8643.

[17]

Zhang, T.; Hu, Y. Q.; Han, T.; Zhai, Y. Q.; Zheng, Y. Z. Redox-active cobalt(II/III) metal-organic framework for selective oxidation of cyclohexene. ACS Appl. Mater. Interfaces 2018, 10, 15786–15792.

[18]

Flores, J. G.; Aguilar-Pliego, J.; Martin-Guaregua, N.; Ibarra, I. A.; Sanchez-Sanchez, M. Room-temperature prepared bimetallic nanocrystalline MOF-74 as catalysts in the aerobic oxidation of cyclohexene. Catal. Today 2022, 394–396, 295–303

[19]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[20]

Liang, Y.; Cui, Y.; Chao, Y.; Han, N.; Sunarso, J.; Liang, P.; He, X.; Zhang, C.; Liu, S. M. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3− δ for efficient oxygen evolution reaction. Nano Res. 2022, 15, 6977–6986.

[21]

Zheng, X. H.; Li, B.; Shen, L. J.; Cao, Y. N.; Zhan, Y. Y.; Zheng, S. T.; Wang, S. P.; Jiang, L. L. Oxygen vacancies engineering of Fe doped LaCoO3 perovskite catalysts for efficient H2S selective oxidation. Appl. Catal. B: Environ. 2023, 329, 122526.

[22]

Li, F. F.; Tang, J.; Ke, Q. P.; Guo, Y.; Ha, M. N.; Wan, C.; Lei, Z. P.; Gu, J.; Ling, Q.; Nguyen, V. N. et al. Investigation into enhanced catalytic performance for epoxidation of styrene over LaSrCo x Fe2− x O6 double perovskites: The role of singlet oxygen species promoted by the photothermal effect. ACS Catal. 2021, 11, 11855–11866.

[23]

Wang, B. W.; Zhang, N.; Xiao, P.; Zhang, J.; Carabineiro, S. A. C.; Zhu, J. J. Carbon coated LaFe0.92Pd0.08O3 composites for catalytic transfer hydrogenation: Balance in the ability of substrates adsorption and conversion. Nano Res. 2024, 17, 3724–3732.

[24]

Büker, J.; Alkan, B.; Fu, Q.; Xia, W.; Schulwitz, J.; Waffel, D.; Falk, T.; Schulz, C.; Wiggers, H.; Muhler, M. et al. Selective cyclohexene oxidation with O2, H2O2 and tert-butyl hydroperoxide over spray-flame synthesized LaCo1− x Fe x O3 nanoparticles. Catal. Sci. Technol. 2020, 10, 5196–5206

[25]

Ha, M. N.; Lu, G. Z.; Liu, Z. F.; Wang, L. C.; Zhao, Z. 3DOM-LaSrCoFeO6− δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J. Mater. Chem. A 2016, 4, 13155–13165.

[26]

Deepika Shanubhogue, U.; Pal, A.; Rao, A.; Chattopadhyay, S.; Ashok, A. M.; Davis, N. Tuning optical and thermoelectric properties of LaCoO3: Partial substitution of La by isovalent Gd. J. Alloys Compd. 2023, 941, 168987.

[27]

Li, S. Y.; Lin, H. J.; Chu, C.; Martin, C.; MacSwain, W.; Meulenberg, R.; Franck, J. M.; Chakraborty, A.; Zheng, W. W. Interfacial B-site ion diffusion in all-inorganic core/shell perovskite nanocrystals. ACS Nano 2023, 17, 22467–22477.

[28]

Davis, A. H.; Hofman, E.; Chen, K.; Li, Z. J.; Khammang, A.; Zamani, H.; Franck, J. M.; Maye, M. M.; Meulenberg, R. W.; Zheng, W. W. Exciton energy shifts and tunable dopant emission in manganese-doped two-dimensional CdS/ZnS core/shell nanoplatelets. Chem. Mater. 2019, 31, 2516–2523.

[29]

Poerjoto, A. J.; Ashok, J.; Dewangan, N.; Kawi, S. The role of lattice oxygen in CO2 hydrogenation to methanol over La1− x Sr x CuO catalysts. J. CO2 Util. 2021, 47, 101498.

[30]

Ao, R.; Ma, L. P.; Dai, Q. X.; Guo, Z. Y.; Liu, H. P.; Xiong, X.; Pan, Q. H. Simultaneous catalytic oxidation of NO and Hg0 over LaBO3 (B = Co, Mn, Ni, and Cu) perovskites. J. Environ. Chem. Eng. 2021, 9, 106612.

[31]

Tien-Thao, N.; Zahedi-Niaki, M. H.; Alamdari, H.; Kaliaguine, S. Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors. Appl. Catal. A: Gen. 2007, 326, 152–163.

[32]

Zhang, L. L.; Zhu, H.; Hao, J. C.; Wang, C.; Wen, Y. K.; Li, H. N.; Lu, S. L.; Duan, F.; Du, M. L. Integrating the cationic engineering and hollow structure engineering into perovskites oxides for efficient and stable electrocatalytic oxygen evolution. Electrochim. Acta 2019, 327, 135033.

[33]

Ran, J.; Wang, T.; Zhang, J.; Liu, Y.; Xu, C.; Xi, S.; Gao, D. Modulation of electronics of oxide perovskites by sulfur doping for electrocatalysis in rechargeable Zn-air batteries. Chem. Mater. 2020, 32, 3439–3446.

[34]

Tang, J.; Chen, J. B.; Zhang, Z. Y.; Ma, Q. C.; Hu, X. L.; Li, P.; Liu, Z. Q.; Cui, P. X.; Wan, C.; Ke, Q. P. et al. Spontaneous generation of singlet oxygen on microemulsion-derived manganese oxides with rich oxygen vacancies for efficient aerobic oxidation. Chem. Sci. 2023, 14, 13402–13409.

[35]

Ke, Q. P.; Zhang, Y. R.; Wan, C.; Tang, J.; Li, S. L.; Guo, X.; Han, M. S.; Hamada, T.; Osman, S. M.; Kang, Y. Q. et al. Sunlight-driven and gram-scale vanillin production via Mn-defected γ-MnO2 catalyst in aqueous environment. Chem. Sci. 2024, 15, 5368–5375.

[36]

Zhou, J. M.; Yang, S. W.; Wan, W. H.; Chen, L. M.; Chen, J. Z. Synergistic catalysis of mesoporous Cu/Co3O4 and surface oxygen vacancy for CO2 fixation to carbamates. J. Catal. 2023, 418, 178–189.

[37]

Jiang, X. X.; Li, X.; Kong, Y.; Deng, C.; Li, X. J.; Hu, Q.; Yang, H. P.; He, C. X. A hierarchically structured tin-cobalt composite with an enhanced electronic effect for high-performance CO2 electroreduction in a wide potential range. J. Energy Chem. 2023, 76, 462–469.

[38]

Tan, G.; Fukuta, H.; De Silva, K. K. H.; Matsuda, A.; Yoshimura, M.; Yoshimoto, M.; Umezawa, K. Characterization of vacuum ultraviolet-irradiated surface modification of CoO (111) crystal by low-energy atom scattering spectroscopy. J. Vac. Sci. Technol. A 2022, 40, 063202.

[39]

Tran, D. T.; Van, T. H.; Tsai, Y. C.; Lin, K. Y. A.; Duong, T. D. MOF-templated hierarchical porous hollow core-shell framework cobalt oxide for enhancing hydrogen generation from borohydride-based hydrolysis. ChemCatChem 2023, 15, e202301133.

[40]

Wang, X. S.; Fei, X.; Wang, M. W.; Wang, W. H.; Yang, Z. X.; Ning, H.; Zhang, Y. L.; Wang, L.; Jin, X.; Wu, M. B. Regular hexagonal CuBi nanosheets boost highly efficient CO2 reduction to HCOOH in a solid-electrolyte cell. J. Mater. Chem. A 2022, 10, 23542–23550.

[41]

Gleißner, R.; Chung, S.; Semione, G. D. L.; Jacobse, L.; Wagstaffe, M.; Tober, S.; Neumann, A. J.; Gizer, G.; Goodwin, C. M.; Soldemo, M. et al. Role of oxidation-reduction dynamics in the application of Cu/ZnO-based catalysts. ACS Appl. Nano Mater. 2023, 6, 8004–8016.

[42]

Liu, Y.; Deng, B. W.; Li, K. L.; Wang, H.; Sun, Y. J.; Dong, F. Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia. J. Colloid Interface Sci. 2022, 614, 405–414.

[43]

Yang, Y. Z.; Gong, Y. Q.; Li, X. L.; Li, M. J.; Wei, Q. P.; Zhou, B. B.; Zhang, J. K. Alkaline-stable peroxidase mimics based on biological metal-organic frameworks for recyclable scavenging of hydrogen peroxide and detecting glucose in apple fruits. ACS Sustain. Chem. Eng. 2022, 10, 10685–10698.

[44]

Cao, Y. H.; Yu, H.; Peng, F.; Wang, H. J. Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catal. 2014, 4, 1617–1625.

[45]

Chen, H. Y.; Lu, Z. C.; Chen, Y.; Wu, S.; Zheng, J. Z.; Qian, Z. Advanced oxidant process with Fe(II)-catalyzed alkaline H2O2 systems for highly efficient concurrent scavenging of NO and SO2 in high gravitational fields. Ind. Eng. Chem. Res. 2022, 61, 16257–16264.

[46]

Guo, Y.; Zhang, Y. X.; Yu, G.; Wang, Y. J. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: The probe approach versus the scavenger approach. Appl. Catal. B: Environ. 2021, 280, 119418.

[47]

Nimai, S.; Zhang, H.; Wu, Z. L.; Li, N. W.; Lai, B. Efficient degradation of sulfamethoxazole by acetylene black activated peroxydisulfate. Chin. Chem. Lett. 2020, 31, 2657–2660.

[48]

Wang, C.; Han, Z. Y.; Zou, X. H.; Liu, H. B.; Wang, H. L.; Shu, D. B.; Chen, T. H.; Suib, S. L. Ultrathin MnO2-coated FeOOH catalyst for indoor formaldehyde oxidation at ambient temperature: New insight into surface reactive oxygen species and in-field testing in an air cleaner. Environ. Sci. Technol. 2022, 56, 10963–10976.

[49]

Li, Z. J.; Li, S. Y.; Davis, A. H.; Hofman, E.; Leem, G.; Zheng, W. W. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 2020, 13, 1668–1676.

[50]

Li, Z. J.; Li, S. Y.; Hofman, E.; Davis, A. H.; Leem, G.; Zheng, W. W. Visible-light induced disproportionation of pyrrole derivatives for photocatalyst-free aryl halides reduction. Green Chem. 2020, 22, 1911–1918.

[51]

Tang, Z. M.; Yu, Y. K.; Chen, Z.; Liu, D. X.; Fang, N.; Wu, H. H.; Liu, Y. M.; He, M. Y. Expanded titanosilicate MWW-related materials synthesized from a boron-containing precursor as an efficient catalyst for cyclohexene oxidation. Micropor. Mesopor. Mater. 2021, 327, 111437.

[52]

Cai, X. D.; Wang, H. Y.; Zhang, Q. P.; Tong, J. H.; Lei, Z. Q. Magnetically recyclable core–shell Fe3O4@chitosan-Schiff base complexes as efficient catalysts for aerobic oxidation of cyclohexene under mild conditions. J. Mol. Catal. A: Chem. 2014, 383–384, 217–224

Nano Research
Pages 6940-6950
Cite this article:
Guo X, Song L, Wang W, et al. Visible light promoted aerobic selective photo-oxidation of cyclohexene on LaCoxCu1−xO3 catalyst. Nano Research, 2024, 17(8): 6940-6950. https://doi.org/10.1007/s12274-024-6697-z
Topics:

690

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 03 March 2024
Revised: 01 April 2024
Accepted: 08 April 2024
Published: 30 May 2024
© Tsinghua University Press 2024
Return