AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ probing of electron transfer at the dynamic MoS2/graphene–water interface for modulating boundary slip

Yishu HanDameng Liu( )
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

At the molybdenum disulfide/graphene (MoS2/G)–water interface, the electron transfer from the top graphene to the bottom MoS2 reduces the electrostatic interactions between MoS2/G heterostructure and water, leading to a significant increased slip length of water on the MoS2/G heterostructure.

Abstract

The boundary slip condition is pivotal for nanoscale fluid motion. Recent research has primarily focused on simulating the interaction mechanism between the electronic structure of two-dimensional materials and slip of water at the nanoscale, raising the possibility for ultralow friction flow of water at the nanoscale. However, experimentally elucidating electronic interactions at the dynamic solid–liquid interface to control boundary slip poses a significant challenge. In this study, the crucial role of electron structures at the dynamic solid–liquid interface in regulating slip length was revealed. Notably, the slip length of water on the molybdenum disulfide/graphene (MoS2/G) heterostructure (100.9 ± 3.6 nm) significantly exceeded that of either graphene (27.7 ± 2.2 nm) or MoS2 (5.7 ± 3.1 nm) alone. It was also analyzed how electron transfer significantly affected interface interactions. Excess electrons played a crucial role in determining the type and proportion of excitons at both MoS2–water and MoS2/G–water interfaces. Additionally, by applying voltage, distinct photoluminescence (PL) responses at static and dynamic interfaces were discovered, achieving a 5-fold modulation in PL intensity and a 2-fold modulation in the trion to exciton intensity ratio. More electrons transfer from the top graphene to the bottom MoS2 at the MoS2/G–water interface, reducing surface charge density. Thus, the reduction of electrostatic interactions between the solid and water leads to an increased slip length of water on the MoS2/G heterostructure. The process aids in comprehending the origin of frictional resistance at the subatomic scale. This work establishes a foundation for actively controlling and designing of fluid transport at the nanoscale.

Electronic Supplementary Material

Download File(s)
6698_ESM.pdf (774.4 KB)

References

[1]
Mikhailov, G. K. Chapter 9—Daniel bernoulli, Hydrodynamica (1738). In Landmark Writings in Western Mathematics 1640–1940; Grattan-Guinness, I.; Cooke, R.; Corry, L.; Crépel, P.; Guicciardini, N., Eds.; Elsevier: Amsterdam, 2005; pp 131–142.
[2]

Neto, C.; Evans, D. R.; Bonaccurso, E.; Butt, H. J.; Craig, V. S. J. Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys. 2005, 68, 2859–2897.

[3]

Li, J. F.; Li, J. J.; Yi, S.; Wang, K. Q. Boundary slip of oil molecules at MoS2 homojunctions governing superlubricity. ACS Appl. Mater. Interfaces 2022, 14, 8644–8653.

[4]

Yi, Z. R.; Wang, X.; Li, W. B.; Qin, X. Z.; Li, Y.; Wang, K. Q.; Guo, Y. T.; Li, X.; Zhang, W. M.; Wang, Z. K. Interfacial friction at action: Interactions, regulation, and applications. Friction 2023, 11, 2153–2180.

[5]

Gao, T. Y.; Li, J. L.; Wang, W. Q.; Luo, J. B. Extremely low friction on gold surface with surfactant molecules induced by surface potential. Friction 2023, 11, 513–523.

[6]

Li, J. J.; Cao, W.; Li, J. F.; Ma, M.; Luo, J. B. Molecular origin of superlubricity between graphene and a highly hydrophobic surface in water. J. Phys. Chem. Lett. 2019, 10, 2978–2984.

[7]

Sokoloff, J. B. Effects of electronic friction from the walls on water flow in carbon nanotubes and on water desalination. Phys. Rev. E 2019, 100, 023112.

[8]

Keerthi, A.; Goutham, S.; You, Y.; Iamprasertkun, P.; Dryfe, R. A. W.; Geim, A. K.; Radha, B. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 2021, 12, 3092.

[9]

Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

[10]

Marbach, S.; Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 2019, 48, 3102–3144.

[11]

Ramos-Alvarado, B.; Kumar, S.; Peterson, G. P. Hydrodynamic slip length as a surface property. Phys. Rev. E 2016, 93, 023101.

[12]

Govind Rajan, A.; Strano, M. S.; Blankschtein, D. Liquids with lower wettability can exhibit higher friction on hexagonal boron nitride: The intriguing role of solid–liquid electrostatic interactions. Nano Lett. 2019, 19, 1539–1551.

[13]

Kavokine, N.; Bocquet, M. L.; Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 2022, 602, 84–90.

[14]

Coquinot, B.; Bocquet, L.; Kavokine, N. Quantum feedback at the solid-liquid interface: Flow-induced electronic current and its negative contribution to friction. Phys. Rev. X 2023, 13, 011019.

[15]

Bui, A. T.; Thiemann, F. L.; Michaelides, A.; Cox, S. J. Classical quantum friction at water–carbon interfaces. Nano Lett. 2023, 23, 580–587.

[16]

Lizée, M.; Marcotte, A.; Coquinot, B.; Kavokine, N.; Sobnath, K.; Barraud, C.; Bhardwaj, A.; Radha, B.; Niguès, A.; Bocquet, L. et al. Strong electronic winds blowing under liquid flows on carbon surfaces. Phys. Rev. X 2023, 13, 011020.

[17]

Joly, L.; Ybert, C.; Trizac, E.; Bocquet, L. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. J. Chem. Phys. 2006, 125, 204716.

[18]

Jing, D. L.; Bhushan, B. The coupling of surface charge and boundary slip at the solid–liquid interface and their combined effect on fluid drag: A review. J. Colloid Interface Sci. 2015, 454, 152–179.

[19]

Soong, C. Y.; Hwang, P. W.; Wang, J. C. Analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with slip-dependent zeta potential. Microfluid. Nanofluid. 2010, 9, 211–223.

[20]

Liu, Z.; Feng, Y. J.; Wang, L.; Liu, Q. Y.; Liu, G. H. Electrokinetic energy conversion in the nanochannel coupled with surface charge and slip effects. Int. J. Heat Mass Transfer 2023, 204, 123874.

[21]

Luan, B. Q.; Zhou, R. H. Wettability and friction of water on a MoS2 nanosheet. Appl. Phys. Lett. 2016, 108, 131601.

[22]

Wen, X. J.; Fan, X. T.; Jin, X. F.; Cheng, J. Band alignment of 2D material–water interfaces. J. Phys. Chem. C 2023, 127, 4132–4143.

[23]

Zhang, L. Y.; Wu, K. L.; Chen, Z. X.; Li, J.; Yu, X. R.; Yang, S. Molecular-scale friction at a water–graphene interface and its relationship with slip behavior. Phys. Fluids 2020, 32, 092001.

[24]

Zhu, H. M.; Zhang, W.; Ye, C.; Shi, J. Q.; Lu, W. X. Rotation induced symmetry change of friction coefficient of water on graphene/h-BN heterostructures. Appl. Phys. Lett. 2022, 120, 084103.

[25]

Cho, K. J.; Gim, S.; Lim, H. K.; Kim, C.; Kim, H. Water slippage on graphitic and metallic surfaces: Impact of the surface packing structure and electron density tail. J. Phys. Chem. C 2020, 124, 11392–11400.

[26]

Becerra, D.; Córdoba, A.; Walther, J. H.; Zambrano, H. A. Water flow in a polymeric nanoslit channel with graphene and hexagonal boron nitride wall coatings: An atomistic study. Phys. Fluids 2023, 35, 102009.

[27]

Geng, X. R.; Yu, M.; Zhang, W.; Liu, Q. W.; Yu, X. P.; Lu, Y. Slip length and structure of liquid water flowing past atomistic smooth charged walls. Sci. Rep. 2019, 9, 18957.

[28]

Tocci, G.; Joly, L.; Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures. Nano Lett. 2014, 14, 6872–6877.

[29]

Tocci, G.; Bilichenko, M.; Joly, L.; Iannuzzi, M. Ab initio nanofluidics: Disentangling the role of the energy landscape and of density correlations on liquid/solid friction. Nanoscale 2020, 12, 10994–11000

[30]

Sokoloff, J. B. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations. Phys. Rev. E 2018, 97, 033107.

[31]

Wang, J. C.; Liu, H.; Hu, X. M.; Liu, Y. S.; Liu, D. M. Imaging of defect-accelerated energy transfer in MoS2/hBN/WS2 heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 8521–8526.

[32]

Liu, H.; Wang, J. C.; Liu, Y. S.; Wang, Y.; Xu, L. J.; Huang, L.; Liu, D. M.; Luo, J. B. Visualizing ultrafast defect-controlled interlayer electron–phonon coupling in van der Waals heterostructures. Adv. Mater. 2022, 34, 2106955.

[33]

Zhu, X. D.; He, J. B.; Liu, W. M.; Zheng, Y. X.; Sheng, C. X.; Luo, Y.; Li, S. J.; Zhang, R. J.; Chu, J. H. Revealing the modulation effects on the electronic band structures and exciton properties by stacking graphene/h-BN/MoS2 schottky heterostructures. ACS Appl. Mater. Interfaces 2023, 15, 2468–2478.

[34]

Greenwood, G.; Kim, J. M.; Zheng, Q. L.; Nahid, S. M.; Nam, S.; Espinosa-Marzal, R. M. Effects of layering and supporting substrate on liquid slip at the single-layer graphene interface. ACS Nano 2021, 15, 10095–10106.

[35]

Li, H.; Xu, Z.; Ma, M. Temperature-dependent slip length for water and electrolyte solution. J. Colloid Interface Sci. 2023, 636, 512–517.

[36]

Ma, M. D.; Shen, L. M.; Sheridan, J.; Liu, J. Z.; Chen, C.; Zheng, Q. S. Friction of water slipping in carbon nanotubes. Phys. Rev. E 2011, 83, 036316.

[37]

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

[38]

Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

[39]

Li, Y.; Xu, C. Y.; Qin, J. K.; Feng, W.; Wang, J. Y.; Zhang, S. Q.; Ma, L. P.; Cao, J.; Hu, P. A.; Ren, W. C. et al. Tuning the excitonic states in MoS2/graphene van der Waals heterostructures via electrochemical gating. Adv. Funct. Mater. 2016, 26, 293–302.

[40]

Kimura, D.; Yotsuya, S.; Yoshimura, T.; Fujimura, N.; Kiriya, D. Strong photoluminescence enhancement in molybdenum disulfide in aqueous media. Langmuir 2022, 38, 13048–13054.

[41]

Santos, E. J. G.; Kaxiras, E. Electric-field dependence of the effective dielectric constant in graphene. Nano Lett. 2013, 13, 898–902.

[42]

Wang, X. J.; Zhang, J. Y.; Liu, X.; Lin, S. Q.; Wang, Z. L. Studying the droplet sliding velocity and charge transfer at a liquid–solid interface. J. Mater. Chem. A 2023, 11, 5696–5702.

[43]

Seki, T.; Ihara, T.; Kanemitsu, Y.; Hayamizu, Y. Photoluminescence of CVD-grown MoS2 modified by pH under aqueous solutions toward potential biological sensing. 2D Mater. 2020, 7, 034001.

[44]

Zhang, W. J.; Matsuda, K.; Miyauchi, Y. pH-dependent photoluminescence properties of monolayer transition-metal dichalcogenides immersed in an aqueous solution. J. Phys. Chem. C 2018, 122, 13175–13181.

[45]

Luo, B.; Liu, T.; Cai, C. C.; Yuan, J. X.; Liu, Y. H.; Gao, C.; Meng, X. J.; Wang, J. L.; Zhang, S.; Chi, M. C. et al. Triboelectric charge-separable probes for quantificationally charge investigating at the liquid-solid interface. Nano Energy 2023, 113, 108532.

[46]

Yamada, Y.; Shinokita, K.; Okajima, Y.; Takeda, S. N.; Matsushita, Y.; Takei, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Matsuda, K. et al. Photoactivation of strong photoluminescence in superacid-treated monolayer molybdenum disulfide. ACS Appl. Mater. Interfaces 2020, 12, 36496–36504.

[47]

Mangaud, E.; Bocquet, M. L.; Bocquet, L.; Rotenberg, B. Chemisorbed vs physisorbed surface charge and its impact on electrokinetic transport: Carbon vs. boron nitride surface. J. Chem. Phys. 2022, 156, 044703.

[48]

Barrios, B.; Minakata, D. Aqueous-phase single-electron transfer calculations for carbonate radicals using the validated marcus theory. Environ. Sci. Technol. Lett. 2023, 10, 204–209.

[49]

Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B. Engineering the charge transfer in all 2D graphene-nanoplatelets heterostructure photodetectors. Sci. Rep. 2016, 6, 24909.

[50]

Liu, H.; Wang, C.; Wang, T.; Hu, X. M.; Liu, D. M.; Luo, J. B. Controllable interlayer charge and energy transfer in perovskite quantum dots/ transition metal dichalcogenide heterostructures. Adv. Mater. Interfaces 2019, 6, 1901263.

[51]

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

[52]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[53]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–1396.

[54]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[55]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[56]

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

[57]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106 .

[58]

Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.

Nano Research
Pages 7513-7521
Cite this article:
Han Y, Liu D. In situ probing of electron transfer at the dynamic MoS2/graphene–water interface for modulating boundary slip. Nano Research, 2024, 17(8): 7513-7521. https://doi.org/10.1007/s12274-024-6698-y
Topics:

651

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 February 2024
Revised: 06 April 2024
Accepted: 09 April 2024
Published: 08 May 2024
© Tsinghua University Press 2024
Return