AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Peroxidase-like active Cu-ZIF-8 with rich copper(I)-nitrogen sites for excellent antibacterial performances toward drug-resistant bacteria

Xiaoze Wang1,2Hui Wang3Jingkun Zhang1,2Ning Han1,2Wenjun Ma1,2Donghai Zhang1,2Mingshui Yao1,2( )Xianliang Wang4( )Yunfa Chen1,2( )
State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
University of the Chinese Academy of Sciences, Beijing 100049, China
Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
Show Author Information

Graphical Abstract

The abundant Cu-Nx active sites enable copper-doped ZIF-8 to possess efficient peroxidase-like activity and excellent antibacterial properties.

Abstract

Bacterial pathogens pose a serious threat to human health, and there is an urgent need to develop highly effective antibacterial materials to eliminate the increasingly serious contamination of drug-resistant bacteria. Here, a Cu-doped ZIF-8 particle with unsaturated copper exhibits high peroxidase-like activity. 99.998% antibacterial efficiency against S. aureus can be achieved for 30 min at a low concentration of 50 μg·mL−1, as well as complete sterilization against E. coli (up to 8 log). 99.999% antibacterial efficiency against Methicillin-resistant Staphylococcus aureus can be achieved, performing orders of magnitude higher than Vancomycin. The mechanism shows that the unsaturated Cu-Nx sites are enzyme-like active centers, which could promote the consumption of bacteria reducing substances by H2O2, and the generated *OH further aggravates bacterial oxidative stress and membrane damage. More importantly, the oxidation activity of adsorbed oxygen species on Cu-ZIF-8 is enhanced by charge transfer and structural changes between the ligand and copper center like natural enzymes. Cu-doped ZIF-8 with peroxidase-like activity shows great potential in antibacterial application and the revealed catalytic mechanism is helpful for understanding the high antibacterial activity of nanoparticles with Cu-Nx sites.

Electronic Supplementary Material

Download File(s)
6699_ESM.pdf (4 MB)

References

[1]

Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993.

[2]

Ikuta, K. S.; Swetschinski, L. R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A. P.; Davis Weaver, N.; Wool, E. E.; Han, C.; Gershberg Hayoon, A. et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248.

[3]

Zhang, Y.; Wen, W. H.; Pu, J. Y.; Tang, M. C.; Zhang, L. W.; Peng, C.; Xu, Y. Q.; Tang, G. L. Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis. Proc. Natl. Acad. Sci. USA 2018, 115, 11232–11237.

[4]

Cao, M. Y.; Chang, Z. S.; Tan, J. S.; Wang, X. N.; Zhang, P. F.; Lin, S.; Liu, J. Q.; Li, A. H. Superoxide radical-mediated self-synthesized Au/MoO3- x hybrids with enhanced peroxidase-like activity and photothermal effect for anti-MRSA therapy. ACS Appl. Mater. Interfaces 2022, 14, 13025–13037.

[5]

Wang, H.; Sarwar, M. T.; Tian, L. Y.; Bao, W. X.; Yang, H. M. Nanoclay modulates cation occupancy in manganese ferrite for catalytic antibacterial treatment. Inorg. Chem. 2022, 61, 17692–17702.

[6]

Li, L.; Cao, S. J.; Wu, Z. H.; Guo, R. Q.; Xie, L.; Wang, L. Y.; Tang, Y. J.; Li, Q.; Luo, X. L.; Ma, L. et al. Modulating electron transfer in vanadium-based artificial enzymes for enhanced ROS-catalysis and disinfection. Adv. Mater. 2022, 34, 2108646.

[7]

Ali, S. R.; De, M. Thiolated ligand-functionalized MoS2 nanosheets for peroxidase-like activities. ACS Appl. Nano Mater. 2021, 4, 12682–12689.

[8]

Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000–11011.

[9]

Han, D. L.; Han, Y. J.; Li, J.; Liu, X. M.; Yeung, K. W. K.; Zheng, Y. F.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y. et al. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B: Environ. 2020, 261, 118248.

[10]

Zhang, R. M.; Song, C. J.; Kou, M. P.; Yin, P. Q.; Jin, X. L.; Wang, L.; Deng, Y.; Wang, B.; Xia, D. H.; Wong, P. K. et al. Sterilization of Escherichia coli by photothermal synergy of WO3- x /C nanosheet under infrared light irradiation. Environ. Sci. Technol. 2020, 54, 3691–3701.

[11]

Li, P.; Li, J. Z.; Feng, X.; Li, J.; Hao, Y. C.; Zhang, J. W.; Wang, H.; Yin, A. X.; Zhou, J. W.; Ma, X. J. et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.

[12]

Liang, Z. D.; Wang, H. Q.; Zhang, K. N.; Ma, G.; Zhu, L. S.; Zhou, L.; Yan, B. Oxygen-defective MnO2/ZIF-8 nanorods with enhanced antibacterial activity under solar light. Chem. Eng. J. 2022, 428, 131349.

[13]

Dong, F. L.; Pang, Z.; Yang, S. Y.; Lin, Q. F.; Song, S.; Li, C.; Ma, X. Y.; Nie, S. X. Improving wastewater treatment by triboelectric-photo/electric coupling effect. ACS Nano 2022, 16, 3449–3475.

[14]

Wang, W. W.; Pan, X. T.; Yang, H. L.; Wang, H.; Wu, Q. Y.; Zheng, L. R.; Xu, B. L.; Wang, J. H.; Shi, X. H.; Bai, F. et al. Bioactive metal-organic frameworks with specific metal-nitrogen (M-N) active sites for efficient sonodynamic tumor therapy. ACS Nano 2021, 15, 20003–20012.

[15]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[16]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[17]

Xing, Y. X.; Wang, L.; Wang, L. C.; Huang, J. X.; Wang, S.; Xie, X. Y.; Zhu, J.; Ding, T.; Cai, K. Y.; Zhang, J. X. Flower-like nanozymes with large accessibility of single atom catalysis sites for ROS generation boosted tumor therapy. Adv. Funct. Mater. 2022, 32, 2111171.

[18]

Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

[19]

Yao, M. S.; Otake, K. I.; Zheng, J. J.; Tsujimoto, M.; Gu, Y. F.; Zheng, L.; Wang, P.; Mohana, S.; Bonneau, M.; Koganezawa, T. et al. Integrated soft porosity and electrical properties of conductive-on-insulating metal-organic framework nanocrystals. Angew. Chem., Int. Ed. 2023, 62, e202303903.

[20]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[21]

Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

[22]

Huang, H. J.; Geng, W.; Wu, X. Z.; Zhang, Y. Y.; Xie, L.; Ma, T.; Cheng, C. Spiky artificial peroxidases with V-O-Fe pair sites for combating antibiotic-resistant pathogens. Angew. Chem., Int. Ed. 2024, 63, e202310811.

[23]

Shan, J. Y.; Li, X.; Yang, K. L.; Xiu, W.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797–13808.

[24]

Chen, Y. L.; Chen, F. M.; He, X. H.; Guo, C. Y.; Cheng, C. X.; Wu, Z. P.; He, Y.; Zhang, W. S.; Cui, F.; Wang, Y. S. et al. Myeloperoxidase-mimetic nanozyme generates hypochlorous acid for phagosomal bacteria elimination. Nano Today 2024, 54, 102137.

[25]
Shi, X. D.; Lv, J.; Deng, S. L.; Zhou, F.; Mei, J. G.; Zheng, L.; Zhang, J. Construction of interlayer coupling diatomic nanozyme with peroxidase-like and photothermal activities for efficient synergistic antibacteria. Adv. Sci., in press, DOI: 10.1002/ADVS.202305823.
[26]
Zhang, C. Y.; Nan, Z. D. 2D/3D-shaped Fe0.8Ni0.2S2/ZIF-67 as a nanozyme for rapid measurement of H2O2 and ascorbic acid with a low limit of detection. Inorg. Chem. 2022 , 61, 13933–13943.
[27]

Hu, M. Z.; Yang, W. J.; Tan, H. Y.; Jin, L.; Zhang, L.; Kerns, P.; Dang, Y. L.; Dissanayake, S.; Schaefer, S.; Liu, B. et al. Template-free synthesis of mesoporous and crystalline transition metal oxide nanoplates with abundant surface defects. Matter 2020, 2, 1244–1259.

[28]

Xie, Z. X.; Liang, S.; Cai, X. C.; Ding, B. B.; Huang, S. S.; Hou, Z. Y.; Ma, P. A.; Cheng, Z. Y.; Lin, J. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Appl. Mater. Interfaces 2019, 11, 31671–31680.

[29]

Kumari, G.; Jayaramulu, K.; Maji, T. K.; Narayana, C. Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study. J. Phys. Chem. A 2013, 117, 11006–11012.

[30]

Thomas, A.; Prakash, M. The role of binary mixtures of ionic liquids in ZIF-8 for selective gas storage and separation: A perspective from computational approaches. J. Phys. Chem. C 2020, 124, 26203–26213.

[31]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[32]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[33]

Liang, N.; Ge, X. Y.; Zhao, Y.; Xia, L.; Song, Z. L.; Kong, R. M.; Qu, F. L. Promoting sensitive colorimetric detection of hydroquinone and Hg2+ via ZIF-8 dispersion enhanced oxidase-mimicking activity of MnO2 nanozyme. J. Hazard. Mater. 2023, 454, 131455.

[34]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[35]

Taheri, M.; Bernardo, I. D.; Lowe, A.; Nisbet, D. R.; Tsuzuki, T. Green full conversion of ZnO nanopowders to well-dispersed zeolitic imidazolate framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption. Cryst. Growth Des. 2020, 20, 2761–2773.

[36]

Chen, C. L.; Alalouni, M. R.; Dong, X. L.; Cao, Z.; Cheng, Q. P.; Zheng, L. R.; Meng, L. K.; Guan, C.; Liu, L. M.; Abou-Hamad, E. et al. Highly active heterogeneous catalyst for ethylene dimerization prepared by selectively doping Ni on the surface of a zeolitic imidazolate framework. J. Am. Chem. Soc. 2021, 143, 7144–7153.

[37]

Wang, X. Z.; Wang, H.; Cheng, J. F.; Li, H.; Wu, X. F.; Zhang, D. H.; Shi, X. H.; Zhang, J. K.; Han, N.; Chen, Y. F. Initiative ROS generation of Cu-doped ZIF-8 for excellent antibacterial performance. Chem. Eng. J. 2023, 466, 143201.

[38]

Liu, Q.; Wan, K. W.; Shang, Y. X.; Wang, Z. G.; Zhang, Y. Y.; Dai, L. R.; Wang, C.; Wang, H.; Shi, X. H.; Liu, D. S. et al. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nat. Mater. 2021, 20, 395–402.

[39]

Chen, Y.; Zou, H.; Yan, B.; Wu, X. J.; Cao, W. W.; Qian, Y. H.; Zheng, L.; Yang, G. W. Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci. 2022, 9, 2103977.

[40]

Wang, Y. F.; Wang, M. K.; Wang, X. X.; Ma, W. Y.; Liu, J. X.; Li, J. Y. Designed synthesis of CD@Cu-ZIF-8 composites as excellent peroxidase mimics for assaying glutathione. Mater. Chem. Front. 2021, 5, 6125–6132.

[41]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

[42]

Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

[43]

Cao, F. F.; Zhang, L.; Wang, H.; You, Y. W.; Wang, Y.; Gao, N.; Ren, J. S.; Qu, X. G. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2019, 58, 16236–16242.

[44]

Wan, Y.; Fang, J.; Wang, Y.; Sun, J.; Sun, Y.; Sun, X. L.; Qi, M. L.; Li, W.; Li, C. Y.; Zhou, Y. M. et al. Antibacterial zeolite imidazole frameworks with manganese doping for immunomodulation to accelerate infected wound healing. Adv. Healthcare Mater. 2021, 10, 2101515.

[45]

Nagarjun, N.; Dhakshinamoorthy, A. A Cu-Doped ZIF-8 metal organic framework as a heterogeneous solid catalyst for aerobic oxidation of benzylic hydrocarbons. New J. Chem. 2019, 43, 18702–18712.

[46]

Wang, Y. F.; Liu, X. S. B. J.; Wang, M. K.; Wang, X. X.; Ma, W. Y.; Li, J. Y. Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sens. Actuators B: Chem. 2021, 329, 129115.

[47]

Dai, Y.; Xing, P.; Cui, X. Q.; Li, Z. H.; Zhang, X. M. Coexistence of Cu(II) and Cu(I) in Cu ion-doped zeolitic imidazolate frameworks (ZIF-8) for the dehydrogenative coupling of silanes with alcohols. Dalton Trans. 2019, 48, 16562–16568.

[48]

Zhe, Y.; Wang, J. L.; Zhao, Z. Q.; Ren, G. Y.; Du, J. J.; Li, K.; Lin, Y. Q. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens. Bioelectron. 2023, 220, 114893.

[49]

Zhang, C. H.; Liu, W. D.; Li, Z.; Yan, B. S.; Lin, J. T.; Chen, C. X.; Zhang, L. B.; Lu, Y. Z. Accelerated mimetic oxidase activity of polydopamine-dressed PdCu nanozyme for the detection of ascorbic acid related bioenzymes. ACS Sustain. Chem. Eng. 2022, 10, 1653–1663.

[50]

Wang, T. Q.; Wang, Y. F.; Sun, M. Z.; Hanif, A.; Wu, H.; Gu, Q. F.; Ok, Y. S.; Tsang, D. C. W.; Li, J. Y.; Yu, J. H. et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem. Sci. 2020, 11, 6670–6681.

[51]

Liu, F. D.; He, H.; Zhang, C. B.; Feng, Z. C.; Zheng, L. R.; Xie, Y. N.; Hu, T. D. Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization. Appl. Catal. B: Environ. 2010, 96, 408–420.

[52]

Ju, Q. Y.; Zheng, J. J.; Xu, L.; Jiang, H. Y.; Xue, Z. Q.; Bai, L.; Guo, Y. Y.; Yao, M. S.; Zhu, T. Y. Enhanced carbon capture with motif-rich amino acid loaded defective robust metal-organic frameworks. Nano Res. 2024, 17, 2004–2010.

[53]

Li, Y. H.; Xiao, J. Z.; Guo, Y. Y.; Han, N.; Yuan, F. L.; Chen, Y. F.; Yao, M. S. Dynamic apertures with diffusion-regulatory functionality in soft porous crystals: A key to solving the century puzzle on isotopologues separation. Nano Res. 2023, 16, 3254–3255.

[54]

Li, Y.; Ma, W. S.; Sun, J.; Lin, M.; Niu, Y. S.; Yang, X. C.; Xu, Y. H. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. Carbon 2020, 159, 149–160.

[55]

Liu, Y. H.; Xu, B. L.; Lu, M. Z.; Li, S. S.; Guo, J.; Chen, F. Z.; Xiong, X. L.; Yin, Z.; Liu, H. Y.; Zhou, D. S. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact. Mater. 2022, 12, 246–256.

[56]

Shakya, S.; He, Y. P.; Ren, X. H.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T. T.; Dhakhwa, R.; Regmi, B.; Li, H. Y. et al. Ultrafine silver nanoparticles embedded in cyclodextrin metal-organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application. Small 2019, 15, 1901065.

[57]

Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2T x MXene. ACS Nano 2016, 10, 3674–3684.

[58]

Cao, X. W.; Zhu, C. X.; Hong, Q.; Chen, X. H.; Wang, K. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Insight into iron leaching from an ascorbate-oxidase-like Fe-N-C nanozyme and oxygen reduction selectivity. Angew. Chem., Int. Ed. 2023, 62, e202302463.

[59]

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeN x species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

[60]

De Angelis, J.; Gastel, J.; Klein, D. C.; Cole, P. A. Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87). J. Biol. Chem. 1998, 273, 3045–3050.

[61]

Zhu, C. X.; Zhou, Z. X.; Gao, X. J.; Tao, Y. H.; Cao, X. W.; Xu, Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Cascade nanozymatic network mimicking cells with selective and linear perception of H2O2. Chem. Sci. 2023, 14, 6780–6791.

[62]

Hong, Q.; Yang, H.; Fang, Y. F.; Li, W.; Zhu, C. X.; Wang, Z.; Liang, S. C.; Cao, X. W.; Zhou, Z. X.; Shen, Y. F. et al. Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing. Nat. Commun. 2023, 14, 2780.

[63]

Zakharova, G. S.; Uporov, I. V.; Tishkov, V. I. Horseradish peroxidase: Modulation of properties by chemical modification of protein and heme. Biochemistry (Moscow) 2011, 76, 1391–1401.

[64]

Li, G. M.; Liu, H.; Hu, T. D.; Pu, F.; Ren, J. S.; Qu, X. G. Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. J. Am. Chem. Soc. 2023, 145, 16835–16842.

[65]

Li, H. L.; Wang, L. B.; Dai, Y. Z.; Pu, Z. T.; Lao, Z. H.; Chen, Y. W.; Wang, M. L.; Zheng, X. S.; Zhu, J. F.; Zhang, W. H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411–417.

[66]

Lim, H.; Brueggemeyer, M. T.; Transue, W. J.; Meier, K. K.; Jones, S. M.; Kroll, T.; Sokaras, D.; Kelemen, B.; Hedman, B.; Hodgson, K. O. et al. Kβ X-ray emission spectroscopy of Cu(I)-lytic polysaccharide monooxygenase: Direct observation of the frontier molecular orbital for H2O2 activation. J. Am. Chem. Soc. 2023, 145, 16015–16025

Nano Research
Pages 7427-7435
Cite this article:
Wang X, Wang H, Zhang J, et al. Peroxidase-like active Cu-ZIF-8 with rich copper(I)-nitrogen sites for excellent antibacterial performances toward drug-resistant bacteria. Nano Research, 2024, 17(8): 7427-7435. https://doi.org/10.1007/s12274-024-6699-x
Topics:

604

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 15 February 2024
Revised: 26 March 2024
Accepted: 08 April 2024
Published: 08 May 2024
© Tsinghua University Press 2024
Return