Zn-air batteries (ZABs) as a potential energy conversion system suffer from low power density (typically ≤ 200 mW·cm−2). Recently, three-dimensional (3D) integrated air cathodes have demonstrated promising performance over traditional two-dimensional (2D) plane ones, which is ascribed to enriched active sites and enhanced diffusion, but without experimental evidence. Herein, we applied a bubble pump consumption chronoamperometry (BPCC) method to quantitatively identify the gas diffusion coefficient (D) and effective catalytic sites density (ρEC) of the integrated air cathodes for ZABs. Furthermore, the D and ρEC values can instruct consequent optimization on the growth of Co embedded N-doped carbon nanotubes (CoNCNTs) on carbon fiber paper (CFP) and aerophilicity tuning, giving 4 times D and 1.3 times ρEC over the conventional 2D Pt/C-CFP counterparts. As a result, using the CoNCNTs with half-wave potential of merely 0.78 V vs. RHE (Pt/C: 0.89 V vs. RHE), the superaerophilic CoNCNTs-CFP cathode-based ZABs exhibited a superior peak power density of 245 mW·cm−2 over traditional 2D Pt/C-CFP counterparts, breaking the threshold of 200 mW·cm−2. This work reveals the intrinsic feature of the 3D integrated air cathodes by yielding exact D and ρEC values, and demonstrates the feasibility of BPCC method for the optimization of integrated electrodes, bypassing trial-and-error strategy.
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.
Jiang, Z.; Liu, X. R.; Liu, X. Z.; Huang, S.; Liu, Y.; Yao, Z. C.; Zhang, Y.; Zhang, Q. H.; Gu, L.; Zheng, L. R. et al. Interfacial assembly of binary atomic metal-N x sites for high-performance energy devices. Nat. Commun. 2023, 14, 1822.
Chen, Z.; Yu, A. P.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett. 2012, 12, 1946–1952.
Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.
Zhong, X. W.; Shao, Y. F.; Chen, B.; Li, C.; Sheng, J. Z.; Xiao, X.; Xu, B. M.; Li, J.; Cheng, H. M.; Zhou, G. M. Rechargeable zinc-air batteries with an ultralarge discharge capacity per cycle and an ultralong cycle life. Adv. Mater. 2023, 35, 2301952.
Lee, J. Y.; Park, G. D.; Kim, J. H.; Hong, J. H.; Kang, Y. C. Synthesis of three-dimensional Co/CoO/N-doped carbon nanotube composite for zinc air battery. Int. J. Energy Res. 2021, 45, 16091–16101.
Pei, Z. X.; Ding, L. Y.; Wang, C.; Meng, Q. Q.; Yuan, Z. W.; Zhou, Z.; Zhao, S. L.; Chen, Y. Make it stereoscopic: Interfacial design for full-temperature adaptive flexible zinc-air batteries. Energy Environ. Sci. 2021, 14, 4926–4935.
Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.
Tang, K.; Hu, H. B.; Xiong, Y.; Chen, L.; Zhang, J. Y.; Yuan, C. Z.; Wu, M. Z. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202202671.
Yu, J.; Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries. Adv. Mater. 2020, 32, 1908488.
Wan, L.; Xu, Z. A.; Cao, Q. B.; Liao, Y. W.; Wang, B. G.; Liu, K. Nanoemulsion-coated Ni-Fe hydroxide self-supported electrode as an air-breathing cathode for high-performance zinc-air batteries. Nano Lett. 2022, 22, 4535–4543.
Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.
Yan, X. X.; Ha, Y.; Wu, R. B. Binder-free air electrodes for rechargeable zinc-air batteries: Recent progress and future perspectives. Small Methods 2021, 5, 2000827.
Park, M. G.; Lee, D. U.; Seo, M. H.; Cano, Z. P.; Chen, Z. W. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries. Small 2016, 12, 2707–2714.
Tang, W. H.; Teng, K. W.; Guo, W. G.; Gu, F.; Li, B. Y.; Qi, R. Y.; Liu, R. P.; Lin, Y. Y.; Wu, M. M.; Chen, Y. H. Defect-engineered Co3O4@nitrogen-deficient graphitic carbon nitride as an efficient bifunctional electrocatalyst for high-performance metal-air batteries. Small 2022, 18, 2202194.
Wu, M. J.; Zhang, G. X.; Hu, Y. F.; Wang, J.; Sun, T. X.; Regier, T.; Qiao, J. L.; Sun, S. H. Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy 2021, 3, 176–187.
Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.
Wang, Q. C.; Ji, Y. J.; Lei, Y. P.; Wang, Y. B.; Wang, Y. D.; Li, Y. Y.; Wang, S. Y. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batterieS. ACS Energy Lett. 2018, 3, 1183–1191.
Xu, Y. Y.; Deng, P. L.; Chen, G. D.; Chen, J. X.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1906081.
Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.
Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.
Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.
H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.
Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.
Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.
Zhang, X. Y.; Pan, S.; Song, H. H.; Guo, W. G.; Gu, F.; Yan, C. Z.; Jin, H. L.; Zhang, L. J.; Chen, Y. H.; Wang, S. Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn-air batteries. J. Mater. Chem. A 2021, 9, 19734–19740.
Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.
Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536–4563.
Guo, Y. B.; Yao, S.; Gao, L. X.; Chen, A.; Jiao, M. G.; Cui, H. J.; Zhou, Z. Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn-air batteries. J. Mater. Chem. A 2020, 8, 4386–4395.
Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Cui, Z. M.; Fu, G. T.; Li, Y. T.; Goodenough, J. B. Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries. Angew. Chem., Int. Ed. 2017, 56, 9901–9905.
Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.
Li, W.; Liu, B.; Liu, D.; Guo, P. F.; Liu, J.; Wang, R. R.; Guo, Y. H.; Tu, X.; Pan, H. G.; Sun, D. L. et al. Alloying Co species into ordered and interconnected macroporous carbon polyhedra for efficient oxygen reduction reaction in rechargeable zinc-air batteries. Adv. Mater. 2022, 34, 2109605.
Wang, G. Z.; Chang, J. F.; Koul, S.; Kushima, A.; Yang, Y. CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery. J. Am. Chem. Soc. 2021, 143, 11595–11601.
Sheng, J.; Sun, S. D.; Jia, G. D.; Zhu, S.; Li, Y. Doping effect on mesoporous carbon-supported single-site bifunctional catalyst for zinc-air batteries. ACS Nano 2022, 16, 15994–16002.
Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.
Rao, P.; Cui, P.; Wei, Z. X.; Wang, M. S.; Ma, J. M.; Wang, Y.; Zhao, X. S. Integrated N-Co/carbon nanofiber cathode for highly efficient zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 29708–29717.
Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.
Liu, X. Z.; Tang, T.; Jiang, W. J.; Zhang, Q. H.; Gu, L.; Hu, J. S. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries. Chem. Commun. 2020, 56, 5374–5377.
Zheng, X. J.; Cao, X. C.; Zeng, K.; Yan, J.; Sun, Z. H.; Rümmeli, M. H.; Yang, R. Z. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries. Small 2021, 17, 2006183.
Lee, D. U.; Choi, J. Y.; Feng, K.; Park, H. W.; Chen, Z. W. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Adv. Energy Mater. 2014, 4, 1301389.
Dong, M. Y.; Fu, H. Q.; Xu, Y. M.; Zou, Y.; Chen, Z. Y.; Wang, L.; Hu, M. Q.; Zhang, K. D.; Fu, B.; Yin, H. J. et al. NiCo alloy-anchored self-supporting carbon foam as a bifunctional oxygen electrode for rechargeable and flexible Zn-air batteries. Battery Energy 2023, 2, 20220063.
Manjunatha, R.; Yuan, J. C.; Li, H. W.; Deng, S. Q.; Ezeigwe, E. R.; Zuo, Y. Z.; Dong, L.; Li, A. J.; Yan, W.; Zhang, F. Z. et al. Facile carbon cloth activation strategy to boost oxygen reduction reaction performance for flexible zinc-air battery application. Carbon Energy 2022, 4, 762–775.
Pan, L. M.; Chen, D. F.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energy 2021, 290, 116777.
Lazaridis, T.; Stühmeier, B. M.; Gasteiger, H. A.; El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 2022, 5, 363–373.
Mayrhofer, K. J. J.; Strmcnik, D.; Blizanac, B. B.; Stamenkovic, V.; Arenz, M.; Markovic, N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188.
Li, M. X.; Xu, W. W.; Zhou, D. J.; Zhang, Y. Y.; Kuang, Y.; Liu, H.; Wang, X. D.; Zhong, Y.; Zhuang, Z. B.; Li, H. et al. Bubble pump consumption chronoamperometry for evaluating gas diffusion electrodes. Chem Catal. 2023, 3, 100769.
Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.
Pampel, J.; Fellinger, T. P. Opening of bottleneck pores for the improvement of nitrogen doped carbon electrocatalysts. Adv. Energy Mater. 2016, 6, 1502389.
Lum, K.; Chandler, D.; Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 1999, 103, 4570–4577.
Kawamura, G.; Ema, T.; Sakamoto, H.; Wei, X.; Muto, H.; Matsuda, A. Spontaneous changes in contact angle of water and oil on novel flip-flop-type hydrophobic multilayer coatings. Appl. Surf. Sci. 2014, 298, 142–146.
Li, Y. J.; Zhang, H. C.; Han, N. N.; Kuang, Y.; Liu, J. F.; Liu, W.; Duan, H. H.; Sun, X. M. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177–182.
Zhao, X. M.; Han, Q. L.; Li, J. D.; Du, X. H.; Liu, G. H.; Wang, Y. J.; Wu, L. L.; Chen, Z. W. Ordered macroporous design of sacrificial Co/VN nano-heterojunction as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Chem. Eng. J. 2022, 433, 133509.
Liang, S.; Zou, L. C.; Zheng, L. J.; Li, F.; Wang, X. X.; Song, L. N.; Xu, J. J. Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Adv. Energy Mater. 2022, 12, 2103097.
Yan, S. F.; Luo, C.; Zhang, H.; Yang, L.; Huang, N.; Zhang, M. Y.; Yu, H. H.; Sun, P. P.; Wang, L. P.; Lv, X. W. et al. In-situ derived Co1− x S@nitrogen-doped carbon nanoneedle array as a bifunctional electrocatalyst for flexible Zinc-air battery. J. Electroanal. Chem. 2021, 900, 115711.
Chen, L. L.; Zhang, Y. L.; Dong, L. L.; Yang, W. X.; Liu, X. J.; Long, L.; Liu, C. Y.; Dong, S. J.; Jia, J. B. Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 4369–4375.