Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Sourcing the merits of 3D integrated air cathodes for high-performance Zn-air batteries by bubble pump consumption chronoamperometry

Mengxuan LiLinfeng YuHai LiuChuanyi ZhangJiazhan LiLiang Luo()Xiaoming Sun ()
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

View original image Download original image
The three-dimensional (3D) integrated air cathodes have been proved as superior alternative of conventional two-dimensional (2D) ones by bubble pump consumption chronoamperometry (BPCC) evaluation, quantitatively exhibiting increased amount of reactive sites and accelerated gas diffusion coefficient for gas consumption reactions, such as high-performance zinc air batteries.

Abstract

Zn-air batteries (ZABs) as a potential energy conversion system suffer from low power density (typically ≤ 200 mW·cm−2). Recently, three-dimensional (3D) integrated air cathodes have demonstrated promising performance over traditional two-dimensional (2D) plane ones, which is ascribed to enriched active sites and enhanced diffusion, but without experimental evidence. Herein, we applied a bubble pump consumption chronoamperometry (BPCC) method to quantitatively identify the gas diffusion coefficient (D) and effective catalytic sites density (ρEC) of the integrated air cathodes for ZABs. Furthermore, the D and ρEC values can instruct consequent optimization on the growth of Co embedded N-doped carbon nanotubes (CoNCNTs) on carbon fiber paper (CFP) and aerophilicity tuning, giving 4 times D and 1.3 times ρEC over the conventional 2D Pt/C-CFP counterparts. As a result, using the CoNCNTs with half-wave potential of merely 0.78 V vs. RHE (Pt/C: 0.89 V vs. RHE), the superaerophilic CoNCNTs-CFP cathode-based ZABs exhibited a superior peak power density of 245 mW·cm−2 over traditional 2D Pt/C-CFP counterparts, breaking the threshold of 200 mW·cm−2. This work reveals the intrinsic feature of the 3D integrated air cathodes by yielding exact D and ρEC values, and demonstrates the feasibility of BPCC method for the optimization of integrated electrodes, bypassing trial-and-error strategy.

Electronic Supplementary Material

Download File(s)
6700_ESM.pdf (1.9 MB)

References

[1]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[2]

Jiang, Z.; Liu, X. R.; Liu, X. Z.; Huang, S.; Liu, Y.; Yao, Z. C.; Zhang, Y.; Zhang, Q. H.; Gu, L.; Zheng, L. R. et al. Interfacial assembly of binary atomic metal-N x sites for high-performance energy devices. Nat. Commun. 2023, 14, 1822.

[3]

Chen, Z.; Yu, A. P.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett. 2012, 12, 1946–1952.

[4]

Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.

[5]

Zhong, X. W.; Shao, Y. F.; Chen, B.; Li, C.; Sheng, J. Z.; Xiao, X.; Xu, B. M.; Li, J.; Cheng, H. M.; Zhou, G. M. Rechargeable zinc-air batteries with an ultralarge discharge capacity per cycle and an ultralong cycle life. Adv. Mater. 2023, 35, 2301952.

[6]

Lee, J. Y.; Park, G. D.; Kim, J. H.; Hong, J. H.; Kang, Y. C. Synthesis of three-dimensional Co/CoO/N-doped carbon nanotube composite for zinc air battery. Int. J. Energy Res. 2021, 45, 16091–16101.

[7]

Pei, Z. X.; Ding, L. Y.; Wang, C.; Meng, Q. Q.; Yuan, Z. W.; Zhou, Z.; Zhao, S. L.; Chen, Y. Make it stereoscopic: Interfacial design for full-temperature adaptive flexible zinc-air batteries. Energy Environ. Sci. 2021, 14, 4926–4935.

[8]

Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

[9]

Tang, K.; Hu, H. B.; Xiong, Y.; Chen, L.; Zhang, J. Y.; Yuan, C. Z.; Wu, M. Z. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202202671.

[10]

Yu, J.; Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries. Adv. Mater. 2020, 32, 1908488.

[11]

Wan, L.; Xu, Z. A.; Cao, Q. B.; Liao, Y. W.; Wang, B. G.; Liu, K. Nanoemulsion-coated Ni-Fe hydroxide self-supported electrode as an air-breathing cathode for high-performance zinc-air batteries. Nano Lett. 2022, 22, 4535–4543.

[12]

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.

[13]

Yan, X. X.; Ha, Y.; Wu, R. B. Binder-free air electrodes for rechargeable zinc-air batteries: Recent progress and future perspectives. Small Methods 2021, 5, 2000827.

[14]

Park, M. G.; Lee, D. U.; Seo, M. H.; Cano, Z. P.; Chen, Z. W. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries. Small 2016, 12, 2707–2714.

[15]

Tang, W. H.; Teng, K. W.; Guo, W. G.; Gu, F.; Li, B. Y.; Qi, R. Y.; Liu, R. P.; Lin, Y. Y.; Wu, M. M.; Chen, Y. H. Defect-engineered Co3O4@nitrogen-deficient graphitic carbon nitride as an efficient bifunctional electrocatalyst for high-performance metal-air batteries. Small 2022, 18, 2202194.

[16]

Wu, M. J.; Zhang, G. X.; Hu, Y. F.; Wang, J.; Sun, T. X.; Regier, T.; Qiao, J. L.; Sun, S. H. Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy 2021, 3, 176–187.

[17]

Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

[18]

Wang, Q. C.; Ji, Y. J.; Lei, Y. P.; Wang, Y. B.; Wang, Y. D.; Li, Y. Y.; Wang, S. Y. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batterieS. ACS Energy Lett. 2018, 3, 1183–1191.

[19]

Xu, Y. Y.; Deng, P. L.; Chen, G. D.; Chen, J. X.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1906081.

[20]

Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

[21]

Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.

[22]

Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

[23]

H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

[24]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[25]

Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

[26]
Gu, F.; Guo, W. G.; Yuan, Y. F.; Deng, Y. P.; Jin, H. L.; Wang, J. C.; Chen, Z. W.; Pan, S.; Chen, Y. H.; Wang, S. External field-responsive ternary non-noble metal oxygen electrocatalyst for rechargeable zinc-air batteries. Adv. Mater., in press, DOI: 10.1002/adma.202313096.
[27]

Zhang, X. Y.; Pan, S.; Song, H. H.; Guo, W. G.; Gu, F.; Yan, C. Z.; Jin, H. L.; Zhang, L. J.; Chen, Y. H.; Wang, S. Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn-air batteries. J. Mater. Chem. A 2021, 9, 19734–19740.

[28]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[29]

Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536–4563.

[30]

Guo, Y. B.; Yao, S.; Gao, L. X.; Chen, A.; Jiao, M. G.; Cui, H. J.; Zhou, Z. Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn-air batteries. J. Mater. Chem. A 2020, 8, 4386–4395.

[31]

Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

[32]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[33]

Cui, Z. M.; Fu, G. T.; Li, Y. T.; Goodenough, J. B. Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries. Angew. Chem., Int. Ed. 2017, 56, 9901–9905.

[34]

Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.

[35]

Li, W.; Liu, B.; Liu, D.; Guo, P. F.; Liu, J.; Wang, R. R.; Guo, Y. H.; Tu, X.; Pan, H. G.; Sun, D. L. et al. Alloying Co species into ordered and interconnected macroporous carbon polyhedra for efficient oxygen reduction reaction in rechargeable zinc-air batteries. Adv. Mater. 2022, 34, 2109605.

[36]

Wang, G. Z.; Chang, J. F.; Koul, S.; Kushima, A.; Yang, Y. CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery. J. Am. Chem. Soc. 2021, 143, 11595–11601.

[37]

Sheng, J.; Sun, S. D.; Jia, G. D.; Zhu, S.; Li, Y. Doping effect on mesoporous carbon-supported single-site bifunctional catalyst for zinc-air batteries. ACS Nano 2022, 16, 15994–16002.

[38]

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

[39]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[40]

Rao, P.; Cui, P.; Wei, Z. X.; Wang, M. S.; Ma, J. M.; Wang, Y.; Zhao, X. S. Integrated N-Co/carbon nanofiber cathode for highly efficient zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 29708–29717.

[41]

Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.

[42]

Liu, X. Z.; Tang, T.; Jiang, W. J.; Zhang, Q. H.; Gu, L.; Hu, J. S. Fe-doped Co3O4 polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc-air batteries. Chem. Commun. 2020, 56, 5374–5377.

[43]

Zheng, X. J.; Cao, X. C.; Zeng, K.; Yan, J.; Sun, Z. H.; Rümmeli, M. H.; Yang, R. Z. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries. Small 2021, 17, 2006183.

[44]

Lee, D. U.; Choi, J. Y.; Feng, K.; Park, H. W.; Chen, Z. W. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Adv. Energy Mater. 2014, 4, 1301389.

[45]

Dong, M. Y.; Fu, H. Q.; Xu, Y. M.; Zou, Y.; Chen, Z. Y.; Wang, L.; Hu, M. Q.; Zhang, K. D.; Fu, B.; Yin, H. J. et al. NiCo alloy-anchored self-supporting carbon foam as a bifunctional oxygen electrode for rechargeable and flexible Zn-air batteries. Battery Energy 2023, 2, 20220063.

[46]

Manjunatha, R.; Yuan, J. C.; Li, H. W.; Deng, S. Q.; Ezeigwe, E. R.; Zuo, Y. Z.; Dong, L.; Li, A. J.; Yan, W.; Zhang, F. Z. et al. Facile carbon cloth activation strategy to boost oxygen reduction reaction performance for flexible zinc-air battery application. Carbon Energy 2022, 4, 762–775.

[47]

Pan, L. M.; Chen, D. F.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energy 2021, 290, 116777.

[48]

Lazaridis, T.; Stühmeier, B. M.; Gasteiger, H. A.; El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 2022, 5, 363–373.

[49]

Mayrhofer, K. J. J.; Strmcnik, D.; Blizanac, B. B.; Stamenkovic, V.; Arenz, M.; Markovic, N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188.

[50]

Li, M. X.; Xu, W. W.; Zhou, D. J.; Zhang, Y. Y.; Kuang, Y.; Liu, H.; Wang, X. D.; Zhong, Y.; Zhuang, Z. B.; Li, H. et al. Bubble pump consumption chronoamperometry for evaluating gas diffusion electrodes. Chem Catal. 2023, 3, 100769.

[51]

Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.

[52]

Pampel, J.; Fellinger, T. P. Opening of bottleneck pores for the improvement of nitrogen doped carbon electrocatalysts. Adv. Energy Mater. 2016, 6, 1502389.

[53]

Lum, K.; Chandler, D.; Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 1999, 103, 4570–4577.

[54]

Kawamura, G.; Ema, T.; Sakamoto, H.; Wei, X.; Muto, H.; Matsuda, A. Spontaneous changes in contact angle of water and oil on novel flip-flop-type hydrophobic multilayer coatings. Appl. Surf. Sci. 2014, 298, 142–146.

[55]

Li, Y. J.; Zhang, H. C.; Han, N. N.; Kuang, Y.; Liu, J. F.; Liu, W.; Duan, H. H.; Sun, X. M. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177–182.

[56]

Zhao, X. M.; Han, Q. L.; Li, J. D.; Du, X. H.; Liu, G. H.; Wang, Y. J.; Wu, L. L.; Chen, Z. W. Ordered macroporous design of sacrificial Co/VN nano-heterojunction as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Chem. Eng. J. 2022, 433, 133509.

[57]

Liang, S.; Zou, L. C.; Zheng, L. J.; Li, F.; Wang, X. X.; Song, L. N.; Xu, J. J. Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Adv. Energy Mater. 2022, 12, 2103097.

[58]

Yan, S. F.; Luo, C.; Zhang, H.; Yang, L.; Huang, N.; Zhang, M. Y.; Yu, H. H.; Sun, P. P.; Wang, L. P.; Lv, X. W. et al. In-situ derived Co1− x S@nitrogen-doped carbon nanoneedle array as a bifunctional electrocatalyst for flexible Zinc-air battery. J. Electroanal. Chem. 2021, 900, 115711.

[59]

Chen, L. L.; Zhang, Y. L.; Dong, L. L.; Yang, W. X.; Liu, X. J.; Long, L.; Liu, C. Y.; Dong, S. J.; Jia, J. B. Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 4369–4375.

Nano Research
Pages 6951-6959
Cite this article:
Li M, Yu L, Liu H, et al. Sourcing the merits of 3D integrated air cathodes for high-performance Zn-air batteries by bubble pump consumption chronoamperometry. Nano Research, 2024, 17(8): 6951-6959. https://doi.org/10.1007/s12274-024-6700-8
Topics:
Metrics & Citations  
Article History
Copyright
Return