Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Printing techniques hold great potential in the manufacture of electronics such as sensors, micro-supercapacitors, and flexible electronics. However, developing large-scale functional conductive inks with appropriate rheological properties and active components still remains a challenge. Herein, through optimizing the formulations of ink, iron single sites supported N-doped carbon black (Fe1-NC) inks can serve as both conductive electrodes and high-reactive catalysts to realize convenient glucose detection, which pronouncedly reduces the dosage of enzyme and simplifies the sensors preparation. In detail, utilizing in-situ pyrolysis method, Fe1-NC single-atom catalysts (SACs) are prepared in bulk (dekagram-level). The batched Fe1-NC SACs materials can be uniformly mixed with modulated ink to realize the screen printing with high resolution and uniformity. Also, the whole scalable preparation and ink-functional process can be extended to various metals (including Co, Ni, Cu, and Mn). The introduction of highly active Fe1-NC sites reduces the amount of enzyme used in glucose detection by at least 50%, contributing to the cost reduction of sensors. The strategy in harnessing the SACs onto the carbon inks thus provides a broad prospect for the low-cost and large-scale printing of sensitive sensing devices.
Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709.
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.
Lee, H.; Hong, Y. J.; Baik, S.; Hyeon, T.; Kim, D. H. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthcare Mater. 2018, 7, 1701150.
Wei, M.; Qiao, Y. X.; Zhao, H. T.; Liang, J.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Lu, W. B.; Sun, X. P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569.
Pu, Z. H.; Zhang, X. G.; Yu, H. X.; Tu, J. A.; Chen, H. L.; Liu, Y. C.; Su, X.; Wang, R. D.; Zhang, L.; Li, D. C. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 2021, 7, eabd0199.
Hu, G. H.; Kang, J.; Ng, L. W. T.; Zhu, X. X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265–3300.
Bonaccorso, F.; Bartolotta, A.; Coleman, J. N.; Backes, C. 2D-crystal-based functional inks. Adv. Mater. 2016, 28, 6136–6166
Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. F. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716.
Zhang, Y. Z.; Wang, Y.; Jiang, Q.; El-Demellawi, J. K.; Kim, H.; Alshareef, H. N. MXene printing and patterned coating for device applications. Adv. Mater. 2020, 32, 1908486.
Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.
Xing, L. W.; Jin, Y. J.; Weng, Y. X.; Feng, R.; Ji, Y. J.; Gao, H. Y.; Chen, X.; Zhang, X. W.; Jia, D. D.; Wang, G. Top-down synthetic strategies toward single atoms on the rise. Matter 2022, 5, 788–807.
Xi, J. B.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008318.
Li, W. X.; Guo, Z. H.; Yang, J.; Li, Y.; Sun, X. L.; He, H. Y.; Li, S. A.; Zhang, J. J. Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion. Electrochem. Energy Rev. 2022, 5, 9.
Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.
Li, L. C.; Zhang, N. Q. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano Res. 2023, 16, 6380–6401.
Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang. D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Wang, M. Y.; Ye, M. F.; Wang, J. Y.; Xu, Y.; Wang, Z. D.; Tong, X. Y.; Han, X. Y.; Zhang, K.; Wang, W. H.; Wu, K. L. et al. Recent advances and applications of single atom catalysts based electrochemical sensors. Nano Res. 2024, 17, 2994–3013.
Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.
Jiao, L.; Xu, W. Q.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765.
Jin, H.; Ye, D. X.; Shen, L. H.; Fu, R. X.; Tang, Y.; Jung, J. C. Y.; Zhao, H. B.; Zhang, J. J. Perspective for single atom nanozymes based sensors: Advanced materials, sensing mechanism, selectivity regulation, and applications. Anal. Chem. 2022, 94, 1499–1509.
Zhou, W.; Tan, Y.; Ma, J.; Wang, X.; Yang, L.; Li, Z.; Liu, C. C.; Wu, H.; Sun, L.; Deng, W. Q. Ultrasensitive NO sensor based on a nickel single-atom electrocatalyst for preliminary screening of COVID-19. ACS Sens. 2022, 7, 3422–3429.
Yao, Y. C.; Zhao, L.; Dai, J.; Wang, J. X.; Fang, C. Y.; Zhan, G. M.; Zheng, Q.; Hou, W.; Zhang, L. Z. Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction. Angew. Chem., Int. Ed. 2022, 61, e202208215.
Liu, J.; Sun, X. J.; Song, P.; Zhang, Y. W.; Xing, W.; Xu, W. L. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron. Adv. Mater. 2013, 25, 6879–6883.
Zhou, Y. Z.; Chen, G. B.; Wang, Q.; Wang, D.; Tao, X. F.; Zhang, T. R.; Feng, X. L.; Müllen, K. Fe-N-C electrocatalysts with densely accessible Fe-N4 sites for efficient oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2102420.
Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.
Li, Z. H.; Tian, E. Z.; Wang, S. L.; Ye, M. Y.; Li, S. J.; Wang, Z. Y.; Ma, Z. Z.; Jiang, G. Y.; Tang, C.; Liu, K. H. et al. Single-atom catalysts: Promotors of highly sensitive and selective sensors. Chem. Soc. Rev. 2023, 52, 5088–5134.
Zheng, S. H.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y. X.; Ma, J. X.; Liu, S. Z.; Wu, Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, 2005449.