Although numerous metal halide perovskite materials have been investigated in the field of optoelectronic, the development of perovskite heterojunctions with exotic structures is still rare. Herein, we report the epitaxial growth of quasi-two-dimensional (Q-2D) perovskites on methylammonium lead iodide (MAPbI3) single crystals to form perovskite heterojunctions with interfacial bonding. The MAPbI3 adjacent to epitaxial Q-2D perovskite shows blue shifted photoluminescence with shortened lifetime, which becomes significant with the reduced layer number of the Q-2D perovskites. Our findings suggest the presence of an interfacial strain gradient leading to enhanced photocarrier separation. Accordingly, compared to the MAPbI3 single crystal detector, the BA2MAPb2I7/MAPbI3 (BA: n-butylamine) heterojunction-based photodetector demonstrates a bandpass detecting property and exhibits 5 times enhanced external quantum efficiency and 83 times enhanced specific detectivity (D* = 3.26 × 1011 Jones). Remarkably, the unencapsulated BA2MAPb2I7/MAPbI3 heterojunction is stable in ambient condition for > 300 days. The Q-2D/3D heterojunction shows suppressed ion inter-diffusion due to the presence of Q-2D phase.
Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.
Zhou, J. C.; Huang, J. Photodetectors based on organic–inorganic hybrid lead halide perovskites. Adv.Sci. 2018, 5, 1700256.
Wang, Z. P.; Lin, Q. Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat.Energy 2017, 2, 17135.
Wu, G. B.; Liang, R.; Ge, M. Z.; Sun, G. X.; Zhang, Y.; Xing, G. C. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv.Mater. 2022, 34, 2105635.
Gangadharan, D. T.; Ma, D. L. Searching for stability at lower dimensions: Current trends and future prospects of layered perovskite solar cells. Energy Environ. Sci. 2019, 12, 2860–2889.
Sheng, X.; Li, Y. H.; Xia, M.; Shi, E. Z. Quasi-2D halide perovskite crystals and their optoelectronic applications. J. Mater. Chem. A 2022, 10, 19169–19183.
Wang, J. F.; Luo, S. Q.; Lin, Y.; Chen, Y. F.; Deng, Y. H.; Li, Z. M.; Meng, K.; Chen, G.; Huang, T. T.; Xiao, S. et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 2020, 11, 582.
Kuo, M. Y.; Spitha, N.; Hautzinger, M. P.; Hsieh, P. L.; Li, J.; Pan, D. X.; Zhao, Y. Z.; Chen, L. J.; Huang, M. H.; Jin, S. et al. Distinct carrier transport properties across horizontally vs. vertically oriented heterostructures of 2D/3D perovskites. J. Am. Chem. Soc. 2021, 143, 4969–4978.
Choi, Y.; Koo, D.; Jeong, G.; Kim, U.; Kim, H.; Huang, F. Z.; Park, H. A vertically oriented two-dimensional Ruddlesden-popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 2022, 15, 3369–3378.
Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S.; Yu, Y. G.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.
Zhang, W. R.; Yashima, M. Recent developments in oxide ion conductors: Focusing on Dion–Jacobson phases. Chem. Commun. 2023, 59, 134–152.
Wang, F.; Bai, S.; Tress, W.; Hagfeldt, A.; Gao, F. Defects engineering for high-performance perovskite solar cells. npj Flex. Electron. 2018, 2, 22.
Zhao, J. S.; Caselli, V. M.; Bus, M.; Boshuizen, B.; Savenije, T. J. How deep hole traps affect the charge dynamics and collection in bare and bilayers of methylammonium lead bromide. ACS Appl. Mater. Interfaces 2021, 13, 16309–16316.
Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H. G.; Toney, M. F.; McGehee, M. D. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 2017, 139, 11117–11124.
Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Steric engineering of metal–halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757.
Chueh, C. C.; Li, C. Z.; Jen, A. K. Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 2015, 8, 1160–1189.
Sidhik, S.; Wang, Y. F.; De Siena, M.; Asadpour, R.; Torma, A. J.; Terlier, T.; Ho, K.; Li, W. B.; Puthirath, A. B.; Shuai, X. T. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 2022, 377, 1425–1430.
Tanaka, K.; Kondo, T. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Sci. Technol. Adv. Mater. 2003, 4, 599–604.
Chen, P.; Bai, Y.; Lyu, M.; Yun, J. H.; Hao, M. M.; Wang, L. Z. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Solar RRL 2018, 2, 1700186.
Li, J. Z.; Wang, J.; Ma, J. Q.; Shen, H. Z.; Li, L.; Duan, X. F.; Li, D. H. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun. 2019, 10, 806.
Leguy, A. M. A.; Hu, Y. H.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407.
Dequilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 2016, 7, 11683.
Li, X. T.; Hoffman, J. M.; Kanatzidis, M. G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 2021, 121, 2230–2291.
Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M.; Yun, J. H.; Wang, L. Z. In-situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.