AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Trace Pd alloyed with Au to boost Au/uncalcined TS-1 catalyzed propane hydro-oxidation to acetone

Jinwei Sun,§Zhihua Zhang,§Erchuan YangWei DuFan LiuKesheng XuYuxia ZhongXuezhi Duan( )Xinggui Zhou( )
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

§ Jinwei Sun and Zhihua Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Trace Pd alloyed with Au catalyst exhibits excellent catalytic performance in the propane hydro-oxidation, and the synergy between Pd single atoms and Au improves the catalytic performance via enhancing hydrogen spillover and modulating the electronic structure of Au.

Abstract

Selective oxidation of propane to acetone (AC) with H2 and O2 provides a direct route to convert low-cost propane into value-added products. Unfortunately, the catalytic activity of conventional Au/Ti-based catalysts is constrained by the high energy barrier for H2 dissociation. Herein, uncalcined TS-1 supported Au-Pd bimetallic catalysts were prepared, and the relationship between the active-site structure and corresponding performance in the selective oxidation of propane with H2 and O2 in the gas phase was systematically investigated. In contrast to the liquid-phase reaction, trace Pd alloyed with Au triggered an increase in both catalytic activity and selectivity, in which Au20-Pd1/TS-1-B catalyst exhibited excellent activity (170 gAC·h−1·kgcat−1) and AC selectivity (90.6%), much higher than those of the Au/TS-1-B catalyst (AC formation rate of 100 gAC·h−1·kgcat−1 and AC selectivity of 86.3%). It was found that Pd was gradually isolated into monomers with the increase of Au/Pd molar ratio, and the synergy between Pd single atoms and Au improved the catalytic performance via enhancing hydrogen dissociation and modulating the electronic structure of Au. Furthermore, the reaction conditions were optimized based on the kinetics studies and the Au20-Pd1/TS-1-B catalyst exhibited enhanced H2 selectivity (45%) and long-term stability (over 130 h). The insights gained here can offer valuable guidance for the design of Au-Pd catalysts applicable to other gas-phase oxidation reactions.

Electronic Supplementary Material

Download File(s)
6705_ESM.pdf (1.1 MB)

References

[1]

Chang, C. W.; Miller, J. T. Catalytic process development strategies for conversion of propane to liquid hydrocarbons. Appl. Catal. A Gen. 2022, 643, 118753.

[2]

Bravo-Suárez, J. J.; Bando, K. K.; Akita, T.; Fujitani, T.; Fuhrer, T. J.; Oyama, S. T. Propane reacts with O2 and H2 on gold supported TS-1 to form oxygenates with high selectivity. Chem. Commun. 2008, 3272–3274

[3]

Abbas, M. N.; Ibrahim, S. A.; Abbas, Z. N.; Ibrahim, T. A. Eggshells as a sustainable source for acetone production. J. King Saud Univ. Eng. Sci. 2022, 34, 381–387.

[4]

Panjapakkul, W.; El-Halwagi, M. M. Technoeconomic analysis of alternative pathways of isopropanol production. ACS Sustain. Chem. Eng. 2018, 6, 10260–10272.

[5]

Perego, C.; de Angelis, A.; Pollesel, P.; Millini, R. Zeolite-based catalysis for phenol production. Ind. Eng. Chem. Res. 2021, 60, 6379–6402.

[6]

Bravo-Suárez, J. J.; Bando, K. K.; Fujitani, T.; Oyama, S. T. Mechanistic study of propane selective oxidation with H2 and O2 on Au/TS-1. J. Catal. 2008, 257, 32–42.

[7]

Wang, G.; Du, W.; Zhang, Z. H.; Tang, Y. Q.; Xu, J. L.; Cao, Y. Q.; Qian, G.; Duan, X. Z.; Yuan, W. K.; Zhou, X. G. Combining trace Pt with surface silylation to boost Au/uncalcined TS-1 catalyzed propylene epoxidation with H2 and O2. AIChE J. 2022, 68, e17416.

[8]

Kanungo, S.; Ferrandez, D. M. P.; d’Angelo, F. N.; Schouten, J. C.; Nijhuis, T. A. Kinetic study of propene oxide and water formation in hydro-epoxidation of propene on Au/Ti-SiO2 catalyst. J. Catal. 2016, 338, 284–294.

[9]

Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

[10]

Nobuhara, K.; Kasai, H.; Diño, W. A.; Nakanishi, H. H2 dissociative adsorption on Mg, Ti, Ni, Pd and La surfaces. Surf. Sci. 2004, 566–568, 703–707

[11]

Liu, G. Z.; Liang, H. R.; Tian, Y. J.; Zhang, B. F.; Wang, L. Direct synthesis of hydrogen peroxide over Pd nanoparticles embedded between HZSM-5 nanosheets layers. Chin. J. Chem. Eng. 2020, 28, 2577–2586.

[12]

Wilson, N. M.; Flaherty, D. W. Mechanism for the direct synthesis of H2O2 on Pd clusters: Heterolytic reaction pathways at the liquid-solid interface. J. Am. Chem. Soc. 2016, 138, 574–586.

[13]

Choudhary, V. R.; Jana, P. Direct H2-to-H2O2 oxidation over highly active/selective Br-F-Pd/Al2O3 catalyst in aqueous acidic medium: Influence of process conditions on the H2O2 formation. Appl. Catal. A Gen. 2009, 352, 35–42.

[14]

Deguchi, T.; Iwamoto, M. Reaction mechanism of direct H2O2 synthesis from H2 and O2 over Pd/C catalyst in water with H+ and Br ions. J. Catal. 2011, 280, 239–246.

[15]

Edwards, J. K.; Thomas, A.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chem. 2008, 10, 388–394.

[16]

Edwards, J. K.; Solsona, B.; N, E. N.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 2009, 323, 1037–1041.

[17]

Gao, F.; Goodman, D. W. Pd-Au bimetallic catalysts: Understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 2012, 41, 8009–8020.

[18]

Zhang, L.; Xie, Z. X.; Gong, J. L. Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications. Chem. Soc. Rev. 2016, 45, 3916–3934.

[19]

Ponec, V. Alloy catalysts: The concepts. Appl. Catal. A Gen. 2001, 222, 31–45.

[20]

Han, Y. F.; Zhong, Z. Y.; Ramesh, K.; Chen, F. X.; Chen, L. W.; White, T.; Tay, Q.; Yaakub, S. N.; Wang, Z. Au promotional effects on the synthesis of H2O2 directly from H2 and O2 on supported Pd-Au alloy catalysts. J. Phys. Chem. C 2007, 111, 8410–8413.

[21]

Wilson, N. M.; Priyadarshini, P.; Kunz, S.; Flaherty, D. W. Direct synthesis of H2O2 on Pd and Au x Pd1 clusters: Understanding the effects of alloying Pd with Au. J. Catal. 2018, 357, 163–175.

[22]

Yi, C. W.; Luo, K.; Wei, T.; Goodman, D. W. The composition and structure of Pd-Au surfaces. J. Phys. Chem. B 2005, 109, 18535–18540.

[23]

Ishihara, T.; Hata, Y.; Nomura, Y.; Kaneko, K.; Matsumoto, H. Pd-Au bimetal supported on rutile-TiO2 for selective synthesis of hydrogen peroxide by oxidation of H2 with O2 under atmospheric pressure. Chem. Lett. 2007, 36, 878–879.

[24]

Ricciardulli, T.; Gorthy, S.; Adams, J. S.; Thompson, C.; Karim, A. M.; Neurock, M.; Flaherty, D. W. Effect of Pd coordination and isolation on the catalytic reduction of O2 to H2O2 over PdAu bimetallic nanoparticles. J. Am. Chem. Soc. 2021, 143, 5445–5464.

[25]

Flaherty, D. W. Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: Current understanding, outstanding questions, and research needs. ACS Catal. 2018, 8, 1520–1527.

[26]

Feng, X.; Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2. Appl. Catal. B: Environ. 2014, 150–151, 396–401

[27]

Crombie, C. M.; Lewis, R. J.; Taylor, R. L.; Morgan, D. J.; Davies, T. E.; Folli, A.; Murphy, D. M.; Edwards, J. K.; Qi, J. Z.; Jiang, H. Y. et al. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catal. 2021, 11, 2701–2714.

[28]

Lewis, R. J.; Ueura, K.; Liu, X.; Fukuta, Y.; Davies, T. E.; Morgan, D. J.; Chen, L. W.; Qi, J. Z.; Singleton, J.; Edwards, J. K. et al. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2. Science 2022, 376, 615–620.

[29]

Hosseini, S. M.; Ghiaci, M.; Kulinich, S. A.; Wunderlich, W.; Monjezi, B. H.; Ghorbani, Y.; Ghaziaskar, H. S.; Koupaei, A. J. Au-Pd nanoparticles enfolded in coil-like TiO2 immobilized on carbon fibers felt as recyclable nanocatalyst for benzene oxidation under mild conditions. Appl. Surf. Sci. 2020, 506, 144644.

[30]

Wang, G.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Lu, M. K.; Qian, G.; Duan, X. Z.; Yuan, W. K.; Zhou, X. G. Surface engineering and kinetics behaviors of Au/uncalcined TS-1 catalysts for propylene epoxidation with H2 and O2. Ind. Eng. Chem. Res. 2019, 58, 17300–17307.

[31]

Feng, X.; Chen, D.; Zhou, X. G. Thermal stability of TPA template and size-dependent selectivity of uncalcined TS-1 supported Au catalyst for propene epoxidation with H2 and O2. RSC Adv. 2016, 6, 44050–44056.

[32]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[33]

Li, Z. S.; Gao, L.; Zhu, X. S.; Ma, W. H.; Feng, X.; Zhong, Q. Synergistic enhancement over Au-Pd/TS-1 bimetallic catalysts for propylene epoxidation with H2 and O2. ChemCatChem 2019, 11, 5116–5123.

[34]

Doudin, N.; Yuk, S. F.; Marcinkowski, M. D.; Nguyen, M. T.; Liu, J. C.; Wang, Y.; Novotny, Z.; Kay, B. D.; Li, J.; Glezakou, V. A. et al. Understanding heterolytic H2 cleavage and water-assisted hydrogen spillover on Fe3O4 (001)-supported single palladium atoms. ACS Catal. 2019, 9, 7876–7887.

[35]

Mashayekhi, N. A.; Kung, M. C.; Kung, H. H. Selective oxidation of hydrocarbons on supported Au catalysts. Catal. Today 2014, 238, 74–79.

[36]

Zhang, L. L.; Wang, A. Q.; Miller, J. T.; Liu, X. Y.; Yang, X. F.; Wang, W. T.; Li, L.; Huang, Y. Q.; Mou, C. Y.; Zhang, T. Efficient and durable Au alloyed Pd single-atom catalyst for the Ullmann reaction of aryl chlorides in water. ACS Catal. 2014, 4, 1546–1553.

[37]

Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal. 2007, 44, 15–26.

[38]

Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

[39]

Lim, B.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. N. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J. Am. Chem. Soc. 2010, 132, 2506–2507.

[40]

Wu, M. L.; Chen, D. H.; Huang, T. C. Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 2001, 17, 3877–3883.

[41]

Toshima, N.; Yonezawa, T. Bimetallic nanoparticles—Novel materials for chemical and physical applications. New J. Chem. 1998, 22, 1179–1201.

[42]

Scott, R. W. J.; Wilson, O. M.; Oh, S. K.; Kenik, E. A.; Crooks, R. M. Bimetallic palladium-gold dendrimer-encapsulated catalysts. J. Am. Chem. Soc. 2004, 126, 15583–15591.

[43]

Chowdhury, R.; Mollick, M. M. R.; Biswas, Y.; Chattopadhyay, D.; Rashid, M. H. Biogenic synthesis of shape-tunable Au-Pd alloy nanoparticles with enhanced catalytic activities. J. Alloys Compd. 2018, 763, 399–408.

[44]

Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J. Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J. Am. Chem. Soc. 2012, 134, 9812–9819.

[45]

Dimitratos, N.; Vilé, G.; Albonetti, S.; Cavani, F.; Fiorio, J.; López, N.; Rossi, L. M.; Wojcieszak, R. Strategies to improve hydrogen activation on gold catalysts. Nat. Rev. Chem. 2024, 8, 95–210.

[46]

Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

[47]

Jiang, T. T.; Jia, C. C.; Zhang, L. C.; He, S. R.; Sang, Y. H.; Li, H. D.; Li, Y. Q.; Xu, X. H.; Liu, H. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale 2015, 7, 209–217.

[48]

Lucci, F. R.; Darby, M. T.; Mattera, M. F. G.; Ivimey, C. J.; Therrien, A. J.; Michaelides, A.; Stamatakis, M.; Sykes, E. C. H. Controlling hydrogen activation, spillover, and desorption with Pd-Au single-atom alloys. J. Phys. Chem. Lett. 2016, 7, 480–485.

[49]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[50]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[51]

Xi, J. B.; Yang, S.; Silvioli, L.; Cao, S. F.; Liu, P.; Chen, Q. Y.; Zhao, Y. Y.; Sun, H. Y.; Hansen, J. N.; Haraldsted, J. P. B. et al. Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. J. Catal. 2021, 393, 313–323.

[52]

Yu, S. M.; Cheng, X.; Wang, Y. S.; Xiao, B.; Xing, Y. R.; Ren, J.; Lu, Y.; Li, H. Y.; Zhuang, C. Q.; Chen, G. High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nat. Commun. 2022, 13, 4737.

[53]

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 2003, 301, 935–938.

[54]

Li, Z. S.; Gao, L.; Ma, W. H.; Zhong, Q. Higher gold atom efficiency over Au-Pd/TS-1 alloy catalysts for the direct propylene epoxidation with H2 and O2. Appl. Surf. Sci. 2019, 497, 143749.

[55]

Feng, X.; Yang, J.; Duan, X. Z.; Cao, Y. Q.; Chen, B. X.; Chen, W. Y.; Lin, D.; Qian, G.; Chen, D.; Yang, C. H. et al. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au-Ag/uncalcined titanium silicate-1 catalysts. ACS Catal. 2018, 8, 7799–7808.

[56]

Herrmann, J. M.; Hoang-Van, C.; Dibansa, L.; Harivololona, R. An in situ electrical conductivity study of a CeO2 aerogel supported palladium catalyst in correlation with the total oxidation of propane. J. Catal. 1996, 159, 361–367.

[57]

Wang, G.; Du, W.; Duan, X. Z.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Chen, W. Y.; Qian, G.; Yuan, W. K.; Zhou, X. G. et al. Mechanism-guided elaboration of ternary Au-Ti-Si sites to boost propylene oxide formation. Chem. Catalysis 2021, 1, 885–895.

[58]

Zhang, Z. H.; Tang, Y. Q.; Du, W.; Xu, J. L.; Wang, Q. H.; Song, N.; Qian, G.; Duan, X. Z.; Zhou, X. G. Engineering gold impregnated uncalcined TS-1 to boost catalytic formation of propylene oxide. Appl. Catal. B: Environ. 2022, 319, 121837.

Nano Research
Pages 7182-7193
Cite this article:
Sun J, Zhang Z, Yang E, et al. Trace Pd alloyed with Au to boost Au/uncalcined TS-1 catalyzed propane hydro-oxidation to acetone. Nano Research, 2024, 17(8): 7182-7193. https://doi.org/10.1007/s12274-024-6705-3
Topics:

367

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 February 2024
Revised: 14 April 2024
Accepted: 15 April 2024
Published: 28 May 2024
© Tsinghua University Press 2024
Return