AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electronic structure engineering of single atomic sites by plasmon-induced hot electrons for highly efficient and selective photocatalysis

Xiaoya Huang1Xinyuan Li1( )Akang Chen1Hongfei Gu1Shouyuan Li1Tailei Hou1Shuwen Zhu1Shuang Yu2Yin Song2Jiatao Zhang1( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

Localized surface plasmon resonance (LSPR) modulates the localized electronic structures of single atomic sites, thereby exhibiting high selectivity and high reduction activity for CO2RR with H2O under visible light irradiation.

Abstract

Single atom (SA) catalysts have achieved great success on highly selective heterogeneous catalysis due to their abundant and homogeneous active sites. The electronic structures of these active sites, restrained by their localized coordination environments, significantly determine their catalytic performances, which are difficult to manipulate. Here, we investigated the effect of localized surface plasmon resonance (LSPR) on engineering the electronic structures of single atomic sites. Typically, core–shell structures consisted of Au core and transition metal SAs loaded N-doped carbon (CN) shell were constructed, namely Au@M-SA/CN (M = Ni, Fe, and Co). It was demonstrated that plasmon-induced hot electrons originated from Au were directionally injected to the M-SAs under visible light irradiation, which significantly changed their electronic structures and meanwhile facilitated improved overall charge separation efficiency. The as-prepared Au@Ni-SA/CN exhibited highly efficient and selective photocatalytic CO2 reduction to CO performance, which is 20.8, 17.5, and 6.9 times those of Au nanoparticles, Au@CN, and Ni-SA/CN, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the plasmon enhanced Ni-SA/CN sites featured increased charge density for efficient intermediate activation, contributing to the superb photocatalytic performance. The work provides a new insight on plasmon and atomic site engineering for efficient and selective catalysis.

Electronic Supplementary Material

Download File(s)
6706_ESM.pdf (3 MB)

References

[1]

Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeO x nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.

[2]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[3]

Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

[4]

Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

[5]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[6]

Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.

[7]

Gong, X. Y.; Li, D. C.; Zhang, Q.; Wang, W. Q.; Tian, Z. B.; Su, G.; Huang, M. H.; Wang, G. H. Cobalt single atoms supported on monolithic carbon with a hollow-on-hollow architecture for efficient transfer hydrogenations. Nano Res. 2023, 16, 11358–11365.

[8]

Sun, K.; Dong, J. C.; Sun, H.; Wang, X. D.; Fang, J. J.; Zhuang, Z. B.; Tian, S. B.; Sun, X. M. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat. Catal. 2023, 6, 1164–1173.

[9]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[10]

Ma, R. Z.; Li, Q. H.; Yan, J.; Tao, Y.; Hu, S. Y.; Liu, D. H.; Gong, J. X.; Xiong, Y. Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions. Nano Res. 2023, 16, 9618–9624.

[11]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[12]

Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.

[13]

Zhou, H.; Wu, Y. E. The next decade of single-atom materials. Sci. Bull. 2023, 68, 465–468.

[14]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[15]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[16]

Gao, Y.; Wang, E. P.; Zheng, Y. Z.; Zhou, J.; Sun, Z. M. Hexagonal MBenes-supported single atom as electrocatalysts for the nitrogen reduction reaction. Energy Mater. Adv. 2023, 4, 0039.

[17]

Hu, S.; Qiao, P. Z.; Yi, X. L.; Lei, Y. M.; Hu, H. L.; Ye, J. H.; Wang, D. F. Selective photocatalytic reduction of CO2 to CO mediated by silver single atoms anchored on tubular carbon nitride. Angew. Chem., Int. Ed. 2023, 62, e202304585.

[18]

Wang, P.; Zhang, R. M.; Wang, K.; Liu, Y. J.; Zhang, L. S.; Wang, X. J.; Li, H. F.; He, Y.; Liu, Z. M. Simultaneously constructing asymmetrically coordinated cobalt single atoms and cobalt nanoclusters via a fresh potassium hydroxide clipping strategy toward efficient alkaline oxygen reduction reaction. Energy Mater. Adv. 2023, 4, 0042.

[19]

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

[20]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[21]

Jia, C. C.; Li, X. X.; Xin, N.; Gong, Y.; Guan, J. X.; Meng, L. N.; Meng, S.; Guo, X. F. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater. 2016, 6, 1600431.

[22]

Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Localized surface Plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097.

[23]

Li, K. H.; Chen, X. Y.; Su, D.; Song, Y. J.; Zhou, H. L.; Liu, Z. G.; Xia, P.; Zhang, X. Y. Design strategies toward plasmon-enhanced 2-dimensional material photodetectors. Adv. Devices Instrum. 2023, 4, 0017.

[24]

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

[25]

Lee, Y. K.; Jung, C. H.; Park, J.; Seo, H.; Somorjai, G. A.; Park, J. Y. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett. 2011, 11, 4251–4255.

[26]

Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

[27]

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

[28]

Wan, X. D.; Pan, Y.; Xu, Y. J.; Liu, J.; Chen, H. L.; Pan, R. R.; Zhao, Y. Z.; Su, P. W.; Li, Y. M.; Zhang, X. M. et al. Ultralong lifetime of plasmon-excited electrons realized in nonepitaxial/epitaxial Au@CdS/CsPbBr3 triple-heteronanocrystals. Adv. Mater. 2023, 35, 2207555.

[29]

Du, R. Z.; Li, X. Y.; Li, Y.; Li, Y. X.; Hou, T. L.; Li, Y. M.; Qiao, C.; Zhang, J. T. Cation exchange synthesis of aliovalent doped InP QDs and their ZnSe x S1− x shell coating for enhanced fluorescence properties. J. Phys. Chem. Lett. 2023, 14, 670–676.

[30]

Hou, T. L.; Li, X. Y.; Zhang, X. M.; Cai, R. S.; Wang, Y. C.; Chen, A. K.; Gu, H. F.; Su, M. Y.; Li, S. Y.; Li, Q. Z. et al. Atomic Au3Cu palisade interlayer in core@shell nanostructures for efficient Kirkendall effect mediation. Nano Lett. 2024, 24, 2719–2726.

[31]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[32]

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

[33]

Zhang, W.; Liu, D.; Liu, T.; Ding, C. L.; Chen, T.; Li, Y. M.; Liu, X. K.; Wang, L.; Li, C. L.; He, J. F. et al. Coordinately unsaturated nickel single atom electrocatalyst for efficient CO2 conversion. Nano Res. 2023, 16, 10873–10880.

[34]

Han, J. T.; Xue, Z. H.; Zhang, K.; Wang, H. H.; Li, X. H.; Chen, J. S. Atomically dispersed Ni-based anti-coking catalysts for methanol dehydrogenation in a fixed-bed reactor. ACS Catal. 2020, 10, 12569–12574.

[35]

Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.

[36]

Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core–shell strategy to metal single-atom materials. J. Am. Chem. Soc. 2017, 139, 10976–10979.

[37]

Feng, C. Y.; Wu, Z. P.; Huang, K. W.; Ye, J. H.; Zhang, H. B. Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180.

[38]

Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere Loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

[39]

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

[40]

Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

[41]

Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

[42]

Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

[43]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[44]

Tong, Y.; Chen, P. Z.; Zhou, T. P.; Xu, K.; Chu, W. S.; Wu, C. Z.; Xie, Y. A Bifunctional Hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem., Int. Ed. 2017, 56, 7121–7125.

[45]

Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by Atomically dispersed Sn δ + sites. Adv. Mater. 2019, 31, 1808135.

[46]

Wang, H. Z.; Gao, Y. Y.; Liu, J.; Li, X. Y.; Ji, M. W.; Zhang, E. H.; Cheng, X. Y.; Xu, M.; Liu, J. J.; Rong, H. P. et al. Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region. Adv. Energy Mater. 2019, 9, 1803889.

[47]

Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

[48]

Feng, J. W.; Liu, J.; Cheng, X. Y.; Liu, J. J.; Xu, M.; Zhang, J. T. Hydrothermal cation exchange enabled gradual evolution of Au@ZnS-AgAuS yolk–shell nanocrystals and their visible light photocatalytic applications. Adv. Sci. 2018, 5, 1700376.

[49]

Zhang, L. S.; Ding, N.; Lou, L. C.; Iwasaki, K.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Nakata, K.; Fujishima, A.; Meng, Q. B. Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@Au NRs/C3N4 nanotubes under visible-light irradiation. Adv. Funct. Mater. 2019, 29, 1806774.

[50]

Yu, G. Y.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W. X.; Yan, W. F.; Liu, G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912.

[51]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[52]

Huang, W. H.; Bo, T. T.; Zuo, S. W.; Wang, Y. Z.; Chen, J. M.; Ould-Chikh, S.; Li, Y.; Zhou, W.; Zhang, J.; Zhang, H. B. Surface decorated Ni sites for superior photocatalytic hydrogen production. SusMat 2022, 2, 466–475.

[53]

Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Li, M. L.; Zhou, Y. J.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Oxygen vacancy generation and stabilization in CeO2− x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catal. 2019, 9, 4573–4581.

[54]

Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.

[55]

Sheng, J. P.; He, Y.; Li, J. Y.; Yuan, C. W.; Huang, H. W.; Wang, S. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO photoreduction. ACS Nano 2020, 14, 13103–13114.

[56]

Ban, C. G.; Duan, Y. Y.; Wang, Y.; Ma, J. P.; Wang, K. W.; Meng, J. Z.; Liu, X.; Wang, C.; Han, X. D.; Cao, G. Z. et al. Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 2022, 14, 74.

[57]

Zhang, X. F.; Huang, W. H.; Yu, L.; García-Melchor, M.; Wang, D. S.; Zhi, L. J.; Zhang, H. B. Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids. Carbon Energy 2024, 6, e362.

[58]

Yang, H.; Hu, Y. W.; Chen, J. J.; Balogun, M. S.; Fang, P. P.; Zhang, S. Q.; Chen, J.; Tong, Y. X. Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 2019, 9, 1901396.

[59]

Jiang, J. W.; Wang, X. F.; Guo, H. Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small 2023, 19, 2301280.

[60]

Wei, Y. Z.; You, F. F.; Zhao, D. C.; Wan, J. W.; Gu, L.; Wang, D. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202212049.

[61]

Ling, G. Z. S.; Oh, V. B. Y.; Haw, C. Y.; Tan, L. L.; Ong, W. J. g-C3N4 photocatalysts: Utilizing electron–hole pairs for boosted redox capability in water splitting. Energy Mater. Adv. 2023, 4, 0038

[62]

Yin, H. B.; Dong, F.; Wang, D. S.; Li, J. H. Coupling Cu single atoms and phase junction for photocatalytic CO2 reduction with 100% CO selectivity. ACS Catal. 2022, 12, 14096–14105.

Nano Research
Pages 6960-6967
Cite this article:
Huang X, Li X, Chen A, et al. Electronic structure engineering of single atomic sites by plasmon-induced hot electrons for highly efficient and selective photocatalysis. Nano Research, 2024, 17(8): 6960-6967. https://doi.org/10.1007/s12274-024-6706-2
Topics:

368

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 March 2024
Revised: 12 April 2024
Accepted: 15 April 2024
Published: 18 May 2024
© Tsinghua University Press 2024
Return