AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterogeneous MXene-based films with graded electrical conductivity towards highly efficient EMI shielding and electrothermal heating

Yu Zhang1,2Guangcheng Zhang2( )Zhonglei Ma2Jianbin Qin2Xi Shen1,3( )
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Show Author Information

Graphical Abstract

We report the development of a heterogeneous composite film comprising a porous multi-walled carbon nanotubes/bacterial cellulose film and an aligned MXene/Ag nanowires backing. The film shows excellent electromagnetic interference (EMI) shielding effectiveness and energy-efficient electrothermal heating.

Abstract

The increasing need for electromagnetic interference (EMI) shielding of electronics in cold environments such as those in aircraft, space exploration, and wearable heaters to avoid hazardous icing conditions or hypothermia requires the development of thin and lightweight EMI shielding materials preferably by absorbing rather than reflecting electromagnetic (EM) waves while also generating heat through energy-efficient electrothermal conversion. However, it is challenging to achieve absorption-dominant EMI shielding and energy-efficient electrothermal heating simultaneously in a thin and lightweight structure. Here, we develop a heterogeneous composite film comprising a porous multi-walled carbon nanotubes (MWCNTs)/bacterial cellulose (BC) film and an aligned MXene/Ag nanowires (NWs) backing via a sequential vacuum filtration process. The porous film contains random conductive networks of MWCNTs with moderate conductivity while the aligned MXene sheets atop Ag NWs network affords high conductivity in the backing, giving rise to graded electrical conductivity for absorption-dominant EMI shielding. The increasing Ag NW coverage leads to significantly increased electrical conductivity without increasing the EM wave reflection as well as the density and thickness of the film, yielding excellent specific EMI shielding effectiveness (> 8500 dB/(g·cm2)), low driving voltage for energy-efficient electrothermal heating (163 °C at 2.5 V), and fast response time (60 s) at a low areal density of 0.015 mg/cm2. Combining EMI shielding and electrothermal heating, the heterogeneous film developed here are promising contenders for the protection of electronic equipment in low-temperature environment.

Electronic Supplementary Material

Video
6709_ESM2.mp4
Download File(s)
6709_ESM1.pdf (567.5 KB)

References

[1]

Chen, J. L.; Wang, L.; Shen, B.; Zheng, W. G. Biomass-based Co/C@Carbon composites derived from MOF-modified cotton fibers for enhanced electromagnetic attenuation. Carbon 2023, 210, 118035.

[2]

Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

[3]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[4]

Jin, M.; Chen, W.; Liu, L. X.; Zhang, H. B.; Ye, L. X.; Min, P.; Yu, Z. Z. Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for high-performance electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 14364–14373.

[5]

Ma, M.; Shao, W. Q.; Chu, Q. D.; Tao, W. T.; Chen, S.; Shi, Y. Q.; He, H. W.; Zhu, Y. L.; Wang, X. Structural design of asymmetric gradient alternating multilayered CNF/MXene/FeCo@rGO composite film for efficient and enhanced absorbing electromagnetic interference shielding. J. Mater. Chem. A 2024, 12, 1617–1628.

[6]
Xie, J. W.; Zhou, G.; Sun, Y. X.; Zhang, F.; Kang, F. Y.; Li, B. H.; Zhao, Y.; Zhang, Y. H.; Feng, W.; Zheng, Q. B. Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small, in press, DOI: 10.1002/smll.202305163.
[7]

Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 2021, 115, 100708.

[8]

Liu, Z.; Liu, C. H.; Wang, Y.; Song, M. P.; Guo, J. C.; Wang, W.; Gao, X. P. Multi-layer carbon fiber paper @reduced graphene oxide/Co/C composite with adjustable electromagnetic interference shielding properties. Carbon 2024, 217, 118655.

[9]

Fan, X.; Wang, F. C.; Gao, Q.; Zhang, Y.; Huang, F.; Xiao, R. L.; Qin, J. B.; Zhang, H.; Shi, X. T.; Zhang, G. C. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength. J. Mater. Sci. Technol. 2021, 103, 177–185.

[10]

Yousefi, N.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Jia, J. J.; Zhang, B.; Tang, B. Z.; Chan, M. S.; Kim, J. K. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 2014, 26, 5480–5487.

[11]

Yang, T.; Hu, J. W.; Wang, P. B.; Edeleva, M.; Cardon, L.; Zhang, J. Two-step approach based on fused filament fabrication for high performance graphene/thermoplastic polyurethane composite with segregated structure. Compos. Part A Appl. Sci. Manuf. 2023, 174, 107719.

[12]

Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069.

[13]

Zhang, D. Y.; Song, W. H.; Lv, L.; Gao, C. Q.; Gao, F.; Guo, H.; Diao, R. M.; Dai, W.; Niu, J.; Chen, X. C. et al. Mono-dispersion decorated ultra-long single-walled carbon nanotube/aramid nanofiber for high-strength electromagnetic interference shielding film with Joule heating properties. Carbon 2023, 214, 118315.

[14]

Yang, G.; Zhou, L. C.; Wang, M. J.; Xiang, T. T.; Pan, D.; Zhu, J. Z.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Nano Res. 2023, 16, 11411–11421.

[15]

Wang, X. H.; Zou, F. F.; Zhao, Y. S.; Li, G. X.; Liao, X. Electromagnetic interference shielding composites and the foams with gradient structure obtained by selective distribution of MWCNTs into hard domains of thermoplastic polyurethane. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107861.

[16]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[17]

Gao, Q.; Zhang, G. C.; Fan, X.; Zhang, H. M.; Zhang, Y.; Huang, F.; Xiao, R. L.; Shi, X. T.; Qin, J. B. Enhancements of foamability, electromagnetic interference shielding and mechanical property of epoxy microcellular composite foam with well-dispersed f-MWCNTs. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106060.

[18]

Yang, B.; Wang, H. R.; Zhang, M. Y.; Jia, F. F.; Liu, Y. Q.; Lu, Z. Q. Mechanically strong, flexible, and flame-retardant Ti3C2T x MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem. Eng. J. 2023, 476, 146834.

[19]

Ma, C.; Mai, T.; Wang, P. L.; Guo, W. Y.; Ma, M. G. Flexible MXene/nanocellulose composite aerogel film with cellular structure for electromagnetic interference shielding and photothermal conversion. ACS Appl. Mater. Interfaces 2023, 15, 47425–47433.

[20]

Xiong, J. H.; Ding, R. J.; Liu, Z. L.; Zheng, H. W.; Li, P. Y.; Chen, Z.; Yan, Q.; Zhao, X.; Xue, F. H.; Peng, Q. Y. et al. High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2023, 474, 145972.

[21]

Zhang, H. M.; Shen, X.; Kim, E.; Wang, M. Y.; Lee, J. H.; Chen, H. M.; Zhang, G. C.; Kim, J. K. Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv. Funct. Mater. 2022, 32, 2111794.

[22]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2T x -(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[23]

Shen, X.; Kim, J. K. Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 2023, 16, 1387–1413.

[24]

Kim, E.; Zhang, H. M.; Lee, J. H.; Chen, H. M.; Zhang, H.; Javed, M. H.; Shen, X.; Kim, J. K. MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106430.

[25]

Shahzad, F.; Alhabeb, M.; Hatter, C.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[26]

Jiang, P. Z.; Deng, Z. M.; Min, P.; Ye, L. X.; Qi, C. Z.; Zhao, H. Y.; Liu, J.; Zhang, H. B.; Yu, Z. Z. Direct ink writing of multifunctional gratings with gel-like MXene/norepinephrine ink for dynamic electromagnetic interference shielding and patterned Joule heating. Nano Res. 2024, 17, 1585–1594.

[27]

Lee, S.; Nguyen, N. K.; Kim, W.; Kim, M.; Cao, V. A.; Nah, J. Absorption-dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface-patterned ferroelectric poly[(vinylidenefluoride- co-trifluoroethylene)-MXene] composite. Adv. Funct. Mater. 2023, 33, 2307588.

[28]

Zhao, B.; Ma, Z. L.; Sun, Y. Y.; Han, Y. X.; Gu, J. W. Flexible and robust Ti3C2T x /(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 2022, 3, 2200162.

[29]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[30]

Luo, S. L.; Li, Q.; Xue, Y. J.; Zhou, B.; Feng, Y. Z.; Liu, C. T. Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response. J. Colloid Interface Sci. 2023, 652, 1645–1652.

[31]

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

[32]

Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

[33]

Chan, K. Y.; Shen, X.; Yang, J.; Lin, K. T.; Venkatesan, H.; Kim, E.; Zhang, H.; Lee, J. H.; Yu, J.; Yang, J. L. et al. Scalable anisotropic cooling aerogels by additive freeze-casting. Nat. Commun. 2022, 13, 5553.

[34]
Xu, J.; Fang, J. Y.; Zuo, P. Y.; Wang, Y. Z.; Zhuang, Q. X. Competitively assembled aramid-MXene Janus aerogel film exhibiting concurrently robust shielding and effective anti-reflection performance. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202400732.
[35]

Zhao, Y.; Miao, B. J.; Nawaz, M. A.; Zhu, Q. S.; Chen, Q. L.; Reina, T. R.; Bai, J. B.; He, D. L.; Al-Tahan, M. A.; Arsalan, M. Construction of cellulose nanofiber-Ti3C2T x MXene/silver nanowire nanocomposite papers with gradient structure for efficient electromagnetic interference shielding. Adv. Compos. Hybrid. Mater. 2024, 7, 34.

[36]

Sun, K.; Wang, F.; Yang, W. K.; Liu, H.; Pan, C. F.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive polyimide fiber/MXene composite film for electromagnetic interference shielding and Joule heating with excellent harsh environment tolerance. ACS Appl. Mater. Interfaces 2021, 13, 50368–50380.

[37]

Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

[38]

Li, J.; Luo, K. C.; Zhang, J. L.; Lei, J.; Lin, H.; Tang, J. H.; Zhong, G. J.; Yan, D. X.; Li, Z. M. Flexible and water-proof nylon mesh with ultralow silver content for effective electromagnetic interference shielding effectiveness. Chem. Eng. J. 2022, 439, 135662.

[39]

Jia, H.; Yang, X.; Kong, Q. Q.; Xie, L. J.; Guo, Q. G.; Song, G.; Liang, L. L.; Chen, J. P.; Li, Y.; Chen, C. M. Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. J. Mater. Chem. A 2021, 9, 1180–1191.

[40]

Tran, T. T. V.; Vo, D. V. N.; Nguyen, S. T.; Vu, C. M. Silver nanowires decorated recycled cigarette filters based epoxy composites with high through-plane thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106485.

[41]

Feng, Y. Z.; Song, J. Z.; Han, G. J.; Zhou, B.; Liu, C. T.; Shen, C. Y. Transparent and stretchable electromagnetic interference shielding film with fence-like aligned silver nanowire conductive network. Small Methods 2023, 7, 2201490.

[42]

Bai, Y.; Zhang, B. Y.; Fei, G. Q.; Ma, Z. L. Composite polymeric film for stretchable, self-healing, recyclable EMI shielding and Joule heating. Chem. Eng. J. 2023, 478, 147382.

[43]

Cao, Y.; Zeng, Z. H.; Huang, D. Y.; Chen, Y.; Zhang, L.; Sheng, X. X. Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res. 2022, 15, 8524–8535.

[44]

Jia, L. C.; Jia, X. X.; Sun, W. J.; Zhang, Y. P.; Xu, L.; Yan, D. X.; Su, H. J.; Li, Z. M. Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 53230–53238.

[45]

Li, Y.; Liu, J. J.; Wang, E. W.; Shen, B.; Chen, J. L.; Zhang, M.; Zhang, F.; Zhao, J. W.; Zheng, W. G. Controllable growth of NiCo compounds with different morphologies and structures on carbon fabrics as EMI shields with improved absorptivity. Carbon 2022, 197, 508–518.

[46]

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2T x MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

[47]

Khazaee, Z.; Mahjoub, A. R.; Cheshme Khavar, A. H. One-pot synthesis of CuBi bimetallic alloy nanosheets-supported functionalized multiwalled carbon nanotubes as efficient photocatalyst for oxidation of fluoroquinolones. Appl. Catal. B Environ. 2021, 297, 120480.

[48]

Zou, K. K.; Sun, H.; Li, X. Y.; Yi, S. Q.; Li, J.; Zhou, Z. S.; Wang, H. L.; Yan, D. X. Extreme environment-bearable polyimide film with a three-dimensional Ag microfiber conductive network for ultrahigh electromagnetic interference shielding. Sci. China Mater. 2023, 66, 1578–1586.

[49]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[50]

Wang, J.; Zhu, X. B.; Xiong, P. X.; Tu, J. P.; Yang, Z. W.; Yao, F. L.; Gama, M.; Zhang, Q. C.; Luo, H. L.; Wan, Y. Z. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 960–968.

[51]

Elechiguerra, J. L.; Larios-Lopez, L.; Liu, C.; Garcia-Gutierrez, D.; Camacho-Bragado, A.; Yacaman, M. J. Corrosion at the nanoscale: The case of silver nanowires and nanoparticles. Chem. Mater. 2005, 17, 6042–6052.

[52]

Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736–4745.

[53]

Zheng, T.; Li, G. Z.; Zhang, L. N.; Sun, W. F.; Pan, X. M.; Chen, T. H.; Wang, Y. H.; Zhou, Y. Q.; Tian, J. L.; Yang, Y. A waterproof, breathable nitrocellulose-based triboelectric nanogenerator for human-machine interaction. Nano Energy 2023, 114, 108649.

[54]

Yang, R.L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 66.

[55]

Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.

[56]

Ma, X. F.; Liu, S. Y.; Luo, H.; Guo, H. T.; Jiang, S. H.; Duan, G. G.; Zhang, G. Y.; Han, J. Q.; He, S. J.; Lu, W. et al. MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 2024, 34, 2310126

[57]

J. T.; Li, J. Z.; Li, T.; Xu, Z. K.; Chen, Y.; Zhang, L. K.; Qi, Q.; Liang, B. L.; Meng, F. B. Flexible and excellent electromagnetic interference shielding film with porous alternating PVA-derived carbon and graphene layers. iScience 2023, 26, 107975

[58]

Liu, Z. X.; Wang, W. Y.; Tan, J. J.; Liu, J.; Zhu, M. F.; Zhu, B. L.; Zhang, Q. Y. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 7170–7180.

[59]

Tang, X. W.; Luo, J. T.; Hu, Z. W.; Lu, S. J.; Liu, X. Y.; Li, S. S.; Zhao, X.; Zhang, Z. H.; Lan, Q. Q.; Ma, P. M. et al. Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Res. 2023, 16, 1755–1763.

[60]

Dai, X.; Zhou, J.; Ma, Z. N.; Chen, J. L.; Shen, B.; Mu, C. Y.; He, A. N.; Dong, Y. Q.; Man, Q. K.; Li, J. W. A smart amorphous wire composite with tunable electromagnetic shielding. Small Struct. 2024, 5, 2300405.

[61]

Hu, G. R.; Dong, F. P.; Xu, J.; Xiong, Y. Z. High thermally conductive, hydrophobic and small-thickness nanocomposite films with symmetrical double conductive networks exhibit ultra-high electromagnetic shielding performance. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107416.

[62]

Xing, Y. Q.; Wan, Y. Z.; Wu, Z.; Wang, J. Q.; Jiao, S. L.; Liu, L. Multilayer ultrathin MXene@AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl. Mater. Interfaces 2023, 15, 5787–5797.

[63]

Zhao, J. R.; Wang, Z.; Xu, S. S.; Wang, H.; Li, Y.; Fang, C. Q. Flexible bilayer Ti3C2T x MXene/cellulose nanocrystals/waterborne polyurethane composite film with excellent mechanical properties for electromagnetic interference shielding. Colloids Surf. A Physicochem. Eng. Aspects 2023, 669, 131556.

[64]

Xu, Z. F.; Chen, J. L.; Shen, B.; Zhao, Y. Q.; Zheng, W. G. A proof-of-concept study of auxetic composite foams with negative poisson’s ratio for enhanced strain-stable performance of electromagnetic shielding. ACS Mater. Lett. 2023, 5, 421–428.

[65]

Jia, P. F.; Zhu, Y. L.; Lu, J. Y.; Wang, B. Y.; Song, L.; Wang, B. B.; Hu, Y. Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance. Chem. Eng. J. 2022, 439, 135673.

Nano Research
Pages 7264-7274
Cite this article:
Zhang Y, Zhang G, Ma Z, et al. Heterogeneous MXene-based films with graded electrical conductivity towards highly efficient EMI shielding and electrothermal heating. Nano Research, 2024, 17(8): 7264-7274. https://doi.org/10.1007/s12274-024-6709-z
Topics:

417

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 08 March 2024
Revised: 14 April 2024
Accepted: 16 April 2024
Published: 28 May 2024
© Tsinghua University Press 2024
Return