Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Direct CO2 hydrogenation offers an important strategy for promoting the global carbon balance, but high thermodynamic and kinetic stability of CO2 has restricted its applicability to only a handful of industrial sectors. Here, we introduce a proof-of-concept application of the electron-rich Pt surface to promote hydrogen donation for electron-rich MoC particles acting as hydrogen acceptors, thereby constructing hydrogen-rich surface of MoC active centers. Moreover, the formed hydrogen-rich and electron-rich surface could greatly decrease reaction activation energy to boost the efficient CO2 hydrogenation into formic acid over the MoC centers. The optimized MoC@NC/Pt-0.1 (NC: nitrogen-doped carbon) catalyst exhibits a high turnover frequency (TOF) value of 1.2 h−1 at a lower temperature of 60 °C and a TOF of 24.2 h−1 under standard reaction conditions widely used in the literature, exceeding 7 times of MoC@NC catalyst and surpassing the benchmark classical non-noble metal active center-based heterogeneous catalyst.
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.
Liu, M. X.; Xu, Y. K.; Meng, Y.; Wang, L. J.; Wang, H.; Huang, Y. C.; Onishi, N.; Wang, L.; Fan, Z. J.; Himeda, Y. Heterogeneous catalysis for carbon dioxide mediated hydrogen storage technology based on formic acid. Adv. Energy Mater. 2022, 12, 2200817.
Su, J.; Yang, L. S.; Lu, M.; Lin, H. F. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. ChemSusChem 2015, 8, 813–816.
Wang, J. S.; Jin, H. H.; Wang, W. H.; Zhao, Y. H.; Li, Y.; Bao, M. Ultrasmall Ni-ZnO/SiO2 synergistic catalyst for highly efficient hydrogenation of NaHCO3 to formic acid. ACS Appl. Mater. Interfaces 2020, 12, 19581–19586.
Su, J.; Lu, M.; Lin, H. F. High yield production of formate by hydrogenating CO2 derived ammonium carbamate/carbonate at room temperature. Green Chem. 2015, 17, 2769–2773.
Filonenko, G. A.; Vrijburg, W. L.; Hensen, E. J. M.; Pidko, E. A. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates. J. Catal. 2016, 343, 97–105.
Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y. et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.
Liu, Q. G.; Yang, X. F.; Li, L.; Miao, S.; Li, Y.; Li, Y. Q.; Wang, X. K.; Huang, Y. Q.; Zhang, T. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst. Nat. Commun. 2017, 8, 1407.
Wang, Z. F.; Kang, Y. R.; Hu, J. T.; Ji, Q. Q.; Lu, Z. X.; Xu, G. L.; Qi, Y. T.; Zhang, M.; Zhang, W. W.; Huang, R. et al. Boosting CO2 hydrogenation to formate over edge-sulfur vacancies of molybdenum disulfide. Angew. Chem., Int. Ed. 2023, 62, e202307086.
Zhao, H. B.; Yu, R. F.; Ma, S. C.; Xu, K. Z.; Chen, Y.; Jiang, K.; Fang, Y.; Zhu, C. X.; Liu, X. C.; Tang, Y. et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat. Catal. 2022, 5, 818–831.
Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.
Kattel, S.; Yan, B. H.; Yang, Y. X.; Chen, J. G.; Liu, P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J. Am. Chem. Soc. 2016, 138, 12440–12450.
Wang, H. H.; Zhang, S. N.; Zhao, T. J.; Liu, Y. X.; Liu, X.; Su, J.; Li, X. H.; Chen, J. S. Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts. Sci. Bull. 2020, 65, 651–657.
Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.
Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor–acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.
Nguyen, L. T. M.; Park, H.; Banu, M.; Kim, J. Y.; Youn, D. H.; Magesh, G.; Kim, W. Y.; Lee, J. S. Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts. RSC Adv. 2015, 5, 105560–105566.
Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.
Lin, X.; Zhou, Z. Y.; Li, Q. Y.; Xu, D.; Xia, S. Y.; Leng, B. L.; Zhai, G. Y.; Zhang, S. N.; Sun, L. H.; Zhao, G. H. et al. Direct oxygen transfer from H2O to cyclooctene over electron-rich RuO2 nanocrystals for epoxidation and hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202207108.
Xu, D.; Zhang, S. N.; Chen, J. S.; Li, X. H. Design of the synergistic rectifying interfaces in Mott–Schottky catalysts. Chem. Rev. 2023, 123, 1–30.
Ruan, D. M.; Fujitsuka, M.; Majima, T. Exfoliated Mo2C nanosheets hybridized on CdS with fast electron transfer for efficient photocatalytic H2 production under visible light irradiation. Appl. Catal. B Environ. 2020, 264, 118541.
Lin, K. Y.; Yang, X. U.; Ma, X. L.; Han, L.; Li, X.; Wang, W.; Zhan, H. J.; Ma, B. J. Efficient bimetal loaded (Rh-Ni)/αβ-Mo x C catalyst for CO2 methanation. J. Chem. Sci. 2021, 133, 108.
Chukwu, E.; Molina, L.; Rapp, C.; Morales, L.; Jin, Z. H.; Karakalos, S.; Wang, H.; Lee, S.; Zachman, M. J.; Yang, M. Crowded supported metal atoms on catalytically active supports may compromise intrinsic activity: A case study of dual-site Pt/α-MoC catalysts. Appl. Catal. B Environ. 2023, 329, 122532.
Sun, L. H.; Li, Q. Y.; Zhang, S. N.; Xu, D.; Xue, Z. H.; Su, H.; Lin, X.; Zhai, G. Y.; Gao, P.; Hirano, S. I. et al. Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. Angew. Chem., Int. Ed. 2021, 60, 25766–25770.
Wei, Z. W.; Wang, H. J.; Zhang, C.; Xu, K.; Lu, X. L.; Lu, T. B. Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 16622–16627.
Xiong, M.; Gao, Z.; Zhao, P.; Wang, G. F.; Yan, W. J.; Xing, S. F.; Wang, P. F.; Ma, J. Y.; Jiang, Z.; Liu, X. C. et al. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat. Commun. 2020, 11, 4773
Sun, Q. M.; Chen, B. W. J.; Wang, N.; He, Q.; Chang, A.; Yang, C. M.; Asakura, H.; Tanaka, T.; Hülsey, M. J.; Wang, C. H. et al. Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 20183–20191.
Zhang, J.; Fan, L. P.; Zhao, F. Y.; Fu, Y. H.; Lu, J. Q.; Zhang, Z. H.; Teng, B. T.; Huang, W. X. Zinc oxide morphology-dependent Pd/ZnO catalysis in base-free CO2 hydrogenation into formic acid. ChemCatChem 2020, 12, 5540–5547.
Figueras, M.; Gutiérrez, R. A.; Viñes, F.; Ramírez, P. J.; Rodriguez, J. A.; Illas, F. Supported molybdenum carbide nanoparticles as an excellent catalyst for CO2 hydrogenation. ACS Catal. 2021, 11, 9679–9687.
Peng, G. W.; Sibener, S. J.; Schatz, G. C.; Ceyer, S. T.; Mavrikakis, M. CO2 hydrogenation to formic acid on Ni (111). J. Phys. Chem. C 2012, 116, 3001–3006.
Sirijaraensre, J.; Limtrakul, J. Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: A DFT study. Appl. Surf. Sci. 2016, 364, 241–248.
Wang, L. B.; Zhang, W. B.; Zheng, X. S.; Chen, Y. Z.; Wu, W. L.; Qiu, J. X.; Zhao, X. C.; Zhao, X.; Dai, Y. Z.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869–876.
Chiang, C. L.; Lin, K. S.; Chuang, H. W. Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst. J. Clean. Prod. 2018, 172, 1957–1977.
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew. Chem., Int. Ed. 2011, 50, 9948–9952.
Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Catalytic hydrogenation of carbon dioxide and bicarbonates with a well-defined cobalt dihydrogen complex. Chem.—Eur. J. 2012, 18, 72–75.
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. High-pressure combinatorial screening of homogeneous catalysts: Hydrogenation of carbon dioxide. Inorg. Chem. 2003, 42, 7340–7341.