Modulating the immune microenvironment to establish sustained positive feedback within immune pathways represents a promising avenue for the treatment of autoimmunity. However, the precise and efficient delivery of therapeutic systems to the subcutaneous basal layer to modulate immune disorders is a major challenge in the treatment of autoimmune psoriasis. In this project, we introduce a dual-functional microneedle (DF-MN) designed to combine MNs with multiple release kinetics and immunotherapy, the programmed treatment is achieved through segmented design of the MN structure, realizing the unification of rapid and long-lasting treatment of autoimmune psoriasis. In vivo imaging results showed that GelMA@M-CSF showed fluorescent signals after 5 days of delivery to subcutaneous tissues, whereas HA@IL-13 showed minimal fluorescent signals after 2 days. The multistage release behavior of MNs and the diffusion mechanism of drugs were explained at the molecular level, in combination with coarse-grained molecular dynamics. Additionally, DF-MN can successfully induce macrophage reprogramming in vitro and ameliorate overall symptoms in a psoriasis mice model, suggesting that it has the potential to be an effective strategy for the treatment of psoriasis and portends to be a transformative platform for the treatment of other autoimmune diseases.
Armstrong, A. W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020, 323, 1945–1960.
Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of psoriasis and development of treatment. J. Dermatol. 2018, 45, 264–272.
Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019, 20, 1475.
Nestle, F. O.; Kaplan, D. H.; Barker, J. Psoriasis. N. Engl. J. Med. 2009, 361, 496–509.
Perera, G. K.; Di Meglio, P.; Nestle, F. O. Psoriasis. Annu. Rev. Pathol. Mech. Dis. 2012, 7, 385–422.
Harden, J. L.; Krueger, J. G.; Bowcock, A. M. The immunogenetics of psoriasis: A comprehensive review. J. Autoimmun. 2015, 64, 66–73.
Kamata, M.; Tada, Y. Dendritic cells and macrophages in the pathogenesis of psoriasis. Front. Immunol. 2022, 13, 941071.
Stratis, A.; Pasparakis, M.; Rupec, R. A.; Markur, D.; Hartmann, K.; Scharffetter-Kochanek, K.; Peters, T.; Van Rooijen, N.; Krieg, T.; Haase, I. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J. Clin. Invest. 2006, 116, 2094–2104.
Wang, H. L.; Peters, T.; Kess, D.; Sindrilaru, A.; Oreshkova, T.; Van Rooijen, N.; Stratis, A.; Renkl, A. C.; Sunderkötter, C.; Wlaschek, M. et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J. Clin. Invest. 2006, 116, 2105–2114.
Clark, R. A.; Kupper, T. S. Misbehaving macrophages in the pathogenesis of psoriasis. J. Clin. Invest. 2006, 116, 2084–2087.
Van De Loosdrecht, A. A.; Nennie, E.; Ossenkoppele, G. J.; Beelen, R. H. J.; Langenhuijsen, M. M. A. C. Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay: A methodological study. J. Immunol. Methods 1991, 141, 15–22.
Gordon, S. The macrophage: Past, present and future. Eur. J. Immunol. 2007, 37, S9–S17.
Murray, P. J. Macrophage polarization. Annu. Rev. Physiol. 2017, 79, 541–566.
Wynn, T. A.; Chawla, A.; Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455.
Li, L.; Zhang, H. Y.; Zhong, X. Q.; Lu, Y.; Wei, J. N.; Li, L.; Chen, H. M.; Lu, C. J.; Han, L. PSORI-CM02 formula alleviates imiquimod-induced psoriasis via affecting macrophage infiltration and polarization. Life Sci. 2020, 243, 117231.
Huang, J. H.; Lin, Y. L.; Wang, L. C.; Chiang, B. L. M2-like macrophages polarized by foxp3- Treg-of-B cells ameliorate imiquimod-induced psoriasis. J. Cell. Mol. Med. 2023, 27, 1477–1492.
Sun, H. F.; Zhao, Y. P.; Zhang, P. F.; Zhai, S. M.; Li, W. W.; Cui, J. W. Transcutaneous delivery of mung bean-derived nanoparticles for amelioration of psoriasis-like skin inflammation. Nanoscale 2022, 14, 3040–3048.
Rostam, H. M.; Singh, S.; Salazar, F.; Magennis, P.; Hook, A.; Singh, T.; Vrana, N. E.; Alexander, M. R.; Ghaemmaghami, A. M. The impact of surface chemistry modification on macrophage polarisation. Immunobiology 2016, 221, 1237–1246.
Davenport Huyer, L.; Mandla, S.; Wang, Y. F.; Campbell, S. B.; Yee, B.; Euler, C.; Lai, B. F.; Bannerman, A. D.; Lin, D. S. Y.; Montgomery, M. et al. Macrophage immunomodulation through new polymers that recapitulate functional effects of itaconate as a power house of innate immunity. Adv. Funct. Mater. 2021, 31, 2003341.
Nuttelman, C. R.; Tripodi, M. C.; Anseth, K. S. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol. 2005, 24, 208–218.
Cha, B. H.; Shin, S. R.; Leijten, J.; Li, Y. C.; Singh, S.; Liu, J. C.; Annabi, N.; Abdi, R.; Dokmeci, M. R.; Vrana, N. E. et al. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv. Healthc. Mater. 2017, 6, 1700289.
Yuan, Y.; Fan, D. D.; Shen, S. H.; Ma, X. X. An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem. Eng. J. 2022, 433, 133859.
Chen, B. Z.; He, Y. T.; Zhao, Z. Q.; Feng, Y. H.; Liang, L.; Peng, J.; Yang, C. Y.; Uyama, H.; Shahbazi, M. A.; Guo, X. D. Strategies to develop polymeric microneedles for controlled drug release. Adv. Drug Deliv. Rev. 2023, 203, 115109.
Wang, C. Y.; He, G. Q.; Zhao, H. H.; Lu, Y.; Jiang, P.; Li, W. Enhancing deep-seated melanoma therapy through wearable self-powered microneedle patch. Adv. Mater. 2024, 36, 2311246.
Chen, B. Z.; Zhang, L. Q.; Xia, Y. Y.; Zhang, X. P.; Guo, X. D. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 2020, 6, eaba7260.
Yang, Y.; Xu, L. L.; Jiang, D. J.; Chen, B. Z.; Luo, R. Z.; Liu, Z.; Qu, X. C.; Wang, C.; Shan, Y. Z.; Cui, Y. et al. Self-powered controllable transdermal drug delivery system. Adv. Funct. Mater. 2021, 31, 2104092.
Chen, B. Z.; Zhao, Z. Q.; Shahbazi, M. A.; Guo, X. D. Microneedle-based technology for cell therapy: Current status and future directions. Nanoscale Horiz. 2022, 7, 715–728.
Liu, T. Q.; Sun, Y. F.; Zhang, W. J.; Wang, R.; Lv, X. Y.; Nie, L.; Shavandi, A.; Yunusov, K. E.; Jiang, G. H. Hollow-adjustable polymer microneedles for prolonged hypoglycemic effect on diabetic rats. Chem. Eng. J. 2024, 481, 148670.
Jiang, X.; Zhang, W.; Terry, R.; Li, W. The progress of fabrication designs of polymeric microneedles and related biomedical applications. BMEMat 2023, 1, e12044.
Jiang, X.; Zeng, Y. N.; Zhang, W.; Wang, C. Y.; Li, W. Advances in microneedle patches for long-acting contraception. Acta Mater. Med. 2023, 2, 1–8.
Bi, D. H.; Qu, F.; Xiao, W. Y.; Wu, J. X.; Liu, P.; Du, H. Y.; Xie, Y. W.; Liu, H. M.; Zhang, L. B.; Tao, J. et al. Reactive oxygen species-responsive gel-based microneedle patches for prolonged and intelligent psoriasis management. ACS Nano 2023, 17, 4346–4357.
Wu, D.; Shou, X.; Yu, Y. R.; Wang, X. C.; Chen, G. P.; Zhao, Y. J.; Sun, L. Y. Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 2022, 32, 2205847.
Zhou, Y.; Yang, L.; Lyu, Y.; Wu, D.; Zhu, Y.; Li, J. J.; Jiang, D. B.; Xin, X. F.; Yin, L. F. Topical delivery of ROS-responsive methotrexate prodrug nanoassemblies by a dissolvable microneedle patch for psoriasis therapy. Int. J. Nanomed. 2023, 18, 899–915.
Tekko, I. A.; Permana, A. D.; Vora, L.; Hatahet, T.; McCarthy, H. O.; Donnelly, R. F. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: Potential for enhanced treatment of psoriasis. Eur. J. Pharm. Sci. 2020, 152, 105469.
Chen, B. Z.; He, M. C.; Zhang, X. P.; Fei, W. M.; Cui, Y.; Guo, X. D. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv. Transl. Res. 2022, 12, 2730–2739.
Yang, Y.; Chen, B. Z.; Zhang, X. P.; Zheng, H.; Li, Z.; Zhang, C. Y.; Guo, X. D. Conductive microneedle patch with electricity-triggered drug release performance for atopic dermatitis treatment. ACS Appl. Mater. Interfaces 2022, 14, 31645–31654.
Qian, L. L.; Jin, F.; Wei, Z. D.; Li, T.; Sun, Z. Y.; Lai, C. T.; Ma, J.; Xiong, R. Y.; Ma, X. Y.; Wang, F. Y. et al. Wearable, self-powered, drug-loaded electronic microneedles for accelerated tissue repair of inflammatory skin disorders. Adv. Funct. Mater. 2023, 33, 2209407.
He, H.; Zhang, S. Z.; Tighe, S.; Son, J.; Tseng, S. C. G. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype. J. Biol. Chem. 2013, 288, 25792–25803.
Bauer, C.; Niculescu-Morzsa, E.; Jeyakumar, V.; Kern, D.; Späth, S. S.; Nehrer, S. Chondroprotective effect of high-molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with m1 macrophages. J. Inflamm. 2016, 13, 31.
Maharjan, A. S.; Pilling, D.; Gomer, R. H. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS One 2011, 6, e26078.
Brochériou, I.; Maouche, S.; Durand, H.; Braunersreuther, V.; Le Naour, G.; Gratchev, A.; Koskas, F.; Mach, F.; Kzhyshkowska, J.; Ninio, E. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: Implication in atherosclerosis. Atherosclerosis 2011, 214, 316–324.
Jaguin, M.; Houlbert, N.; Fardel, O.; Lecureur, V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell. Immunol. 2013, 281, 51–61.
Zhao, Z. Q.; Zhang, B. L.; Chu, H. Q.; Liang, L.; Chen, B. Z.; Zheng, H.; Guo, X. D. A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia. Biomater. Adv. 2022, 133, 112620.
Zhuang, Z. M.; Zhang, Y.; Sun, S. N.; Li, Q.; Chen, K. W.; An, C. F.; Wang, L. B.; Van Den Beucken, J. J. J. P.; Wang, H. N. Control of matrix stiffness using methacrylate-gelatin hydrogels for a macrophage-mediated inflammatory response. ACS Biomater. Sci. Eng. 2020, 6, 3091–3102.
Zhuang, Z. M.; Zhang, Y.; Yang, X. Y.; Yu, T. Z.; Zhang, Y.; Sun, K.; Zhang, Y. G.; Cheng, F.; Zhang, L. J.; Wang, H. N. Matrix stiffness regulates the immunomodulatory effects of mesenchymal stem cells on macrophages via AP1/TSG-6 signaling pathways. Acta Biomater. 2022, 149, 69–81.
Li, J. Y.; Feng, Y. H.; He, Y. T.; Hu, L. F.; Liang, L.; Zhao, Z. Q.; Chen, B. Z.; Guo, X. D. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomater. 2022, 153, 308–319.
Xu, Z. Y.; Gao, L. J.; Chen, P. Y.; Yan, L. T. Diffusive transport of nanoscale objects through cell membranes: A computational perspective. Soft Matter 2020, 16, 3869–3881.
Burov, S.; Tabei, S. M. A.; Huynh, T.; Murrell, M. P.; Philipson, L. H.; Rice, S. A.; Gardel, M. L.; Scherer, N. F.; Dinner, A. R. Distribution of directional change as a signature of complex dynamics. Proc. Natl. Acad. Sci. USA 2013, 110, 19689–19694.
Tabei, S. M. A.; Burov, S.; Kim, H. Y.; Kuznetsov, A.; Huynh, T.; Jureller, J.; Philipson, L. H.; Dinner, A. R.; Scherer, N. F. Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. USA 2013, 110, 4911–4916.