Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Modulating the immune microenvironment to establish sustained positive feedback within immune pathways represents a promising avenue for the treatment of autoimmunity. However, the precise and efficient delivery of therapeutic systems to the subcutaneous basal layer to modulate immune disorders is a major challenge in the treatment of autoimmune psoriasis. In this project, we introduce a dual-functional microneedle (DF-MN) designed to combine MNs with multiple release kinetics and immunotherapy, the programmed treatment is achieved through segmented design of the MN structure, realizing the unification of rapid and long-lasting treatment of autoimmune psoriasis. In vivo imaging results showed that GelMA@M-CSF showed fluorescent signals after 5 days of delivery to subcutaneous tissues, whereas HA@IL-13 showed minimal fluorescent signals after 2 days. The multistage release behavior of MNs and the diffusion mechanism of drugs were explained at the molecular level, in combination with coarse-grained molecular dynamics. Additionally, DF-MN can successfully induce macrophage reprogramming in vitro and ameliorate overall symptoms in a psoriasis mice model, suggesting that it has the potential to be an effective strategy for the treatment of psoriasis and portends to be a transformative platform for the treatment of other autoimmune diseases.
Armstrong, A. W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020, 323, 1945–1960.
Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of psoriasis and development of treatment. J. Dermatol. 2018, 45, 264–272.
Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019, 20, 1475.
Nestle, F. O.; Kaplan, D. H.; Barker, J. Psoriasis. N. Engl. J. Med. 2009, 361, 496–509.
Perera, G. K.; Di Meglio, P.; Nestle, F. O. Psoriasis. Annu. Rev. Pathol. Mech. Dis. 2012, 7, 385–422.
Harden, J. L.; Krueger, J. G.; Bowcock, A. M. The immunogenetics of psoriasis: A comprehensive review. J. Autoimmun. 2015, 64, 66–73.
Kamata, M.; Tada, Y. Dendritic cells and macrophages in the pathogenesis of psoriasis. Front. Immunol. 2022, 13, 941071.
Stratis, A.; Pasparakis, M.; Rupec, R. A.; Markur, D.; Hartmann, K.; Scharffetter-Kochanek, K.; Peters, T.; Van Rooijen, N.; Krieg, T.; Haase, I. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J. Clin. Invest. 2006, 116, 2094–2104.
Wang, H. L.; Peters, T.; Kess, D.; Sindrilaru, A.; Oreshkova, T.; Van Rooijen, N.; Stratis, A.; Renkl, A. C.; Sunderkötter, C.; Wlaschek, M. et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J. Clin. Invest. 2006, 116, 2105–2114.
Clark, R. A.; Kupper, T. S. Misbehaving macrophages in the pathogenesis of psoriasis. J. Clin. Invest. 2006, 116, 2084–2087.
Van De Loosdrecht, A. A.; Nennie, E.; Ossenkoppele, G. J.; Beelen, R. H. J.; Langenhuijsen, M. M. A. C. Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay: A methodological study. J. Immunol. Methods 1991, 141, 15–22.
Gordon, S. The macrophage: Past, present and future. Eur. J. Immunol. 2007, 37, S9–S17.
Murray, P. J. Macrophage polarization. Annu. Rev. Physiol. 2017, 79, 541–566.
Wynn, T. A.; Chawla, A.; Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455.
Li, L.; Zhang, H. Y.; Zhong, X. Q.; Lu, Y.; Wei, J. N.; Li, L.; Chen, H. M.; Lu, C. J.; Han, L. PSORI-CM02 formula alleviates imiquimod-induced psoriasis via affecting macrophage infiltration and polarization. Life Sci. 2020, 243, 117231.
Huang, J. H.; Lin, Y. L.; Wang, L. C.; Chiang, B. L. M2-like macrophages polarized by foxp3- Treg-of-B cells ameliorate imiquimod-induced psoriasis. J. Cell. Mol. Med. 2023, 27, 1477–1492.
Sun, H. F.; Zhao, Y. P.; Zhang, P. F.; Zhai, S. M.; Li, W. W.; Cui, J. W. Transcutaneous delivery of mung bean-derived nanoparticles for amelioration of psoriasis-like skin inflammation. Nanoscale 2022, 14, 3040–3048.
Rostam, H. M.; Singh, S.; Salazar, F.; Magennis, P.; Hook, A.; Singh, T.; Vrana, N. E.; Alexander, M. R.; Ghaemmaghami, A. M. The impact of surface chemistry modification on macrophage polarisation. Immunobiology 2016, 221, 1237–1246.
Davenport Huyer, L.; Mandla, S.; Wang, Y. F.; Campbell, S. B.; Yee, B.; Euler, C.; Lai, B. F.; Bannerman, A. D.; Lin, D. S. Y.; Montgomery, M. et al. Macrophage immunomodulation through new polymers that recapitulate functional effects of itaconate as a power house of innate immunity. Adv. Funct. Mater. 2021, 31, 2003341.
Nuttelman, C. R.; Tripodi, M. C.; Anseth, K. S. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol. 2005, 24, 208–218.
Cha, B. H.; Shin, S. R.; Leijten, J.; Li, Y. C.; Singh, S.; Liu, J. C.; Annabi, N.; Abdi, R.; Dokmeci, M. R.; Vrana, N. E. et al. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv. Healthc. Mater. 2017, 6, 1700289.
Yuan, Y.; Fan, D. D.; Shen, S. H.; Ma, X. X. An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem. Eng. J. 2022, 433, 133859.
Chen, B. Z.; He, Y. T.; Zhao, Z. Q.; Feng, Y. H.; Liang, L.; Peng, J.; Yang, C. Y.; Uyama, H.; Shahbazi, M. A.; Guo, X. D. Strategies to develop polymeric microneedles for controlled drug release. Adv. Drug Deliv. Rev. 2023, 203, 115109.
Wang, C. Y.; He, G. Q.; Zhao, H. H.; Lu, Y.; Jiang, P.; Li, W. Enhancing deep-seated melanoma therapy through wearable self-powered microneedle patch. Adv. Mater. 2024, 36, 2311246.
Chen, B. Z.; Zhang, L. Q.; Xia, Y. Y.; Zhang, X. P.; Guo, X. D. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 2020, 6, eaba7260.
Yang, Y.; Xu, L. L.; Jiang, D. J.; Chen, B. Z.; Luo, R. Z.; Liu, Z.; Qu, X. C.; Wang, C.; Shan, Y. Z.; Cui, Y. et al. Self-powered controllable transdermal drug delivery system. Adv. Funct. Mater. 2021, 31, 2104092.
Chen, B. Z.; Zhao, Z. Q.; Shahbazi, M. A.; Guo, X. D. Microneedle-based technology for cell therapy: Current status and future directions. Nanoscale Horiz. 2022, 7, 715–728.
Liu, T. Q.; Sun, Y. F.; Zhang, W. J.; Wang, R.; Lv, X. Y.; Nie, L.; Shavandi, A.; Yunusov, K. E.; Jiang, G. H. Hollow-adjustable polymer microneedles for prolonged hypoglycemic effect on diabetic rats. Chem. Eng. J. 2024, 481, 148670.
Jiang, X.; Zhang, W.; Terry, R.; Li, W. The progress of fabrication designs of polymeric microneedles and related biomedical applications. BMEMat 2023, 1, e12044.
Jiang, X.; Zeng, Y. N.; Zhang, W.; Wang, C. Y.; Li, W. Advances in microneedle patches for long-acting contraception. Acta Mater. Med. 2023, 2, 1–8.
Bi, D. H.; Qu, F.; Xiao, W. Y.; Wu, J. X.; Liu, P.; Du, H. Y.; Xie, Y. W.; Liu, H. M.; Zhang, L. B.; Tao, J. et al. Reactive oxygen species-responsive gel-based microneedle patches for prolonged and intelligent psoriasis management. ACS Nano 2023, 17, 4346–4357.
Wu, D.; Shou, X.; Yu, Y. R.; Wang, X. C.; Chen, G. P.; Zhao, Y. J.; Sun, L. Y. Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 2022, 32, 2205847.
Zhou, Y.; Yang, L.; Lyu, Y.; Wu, D.; Zhu, Y.; Li, J. J.; Jiang, D. B.; Xin, X. F.; Yin, L. F. Topical delivery of ROS-responsive methotrexate prodrug nanoassemblies by a dissolvable microneedle patch for psoriasis therapy. Int. J. Nanomed. 2023, 18, 899–915.
Tekko, I. A.; Permana, A. D.; Vora, L.; Hatahet, T.; McCarthy, H. O.; Donnelly, R. F. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: Potential for enhanced treatment of psoriasis. Eur. J. Pharm. Sci. 2020, 152, 105469.
Chen, B. Z.; He, M. C.; Zhang, X. P.; Fei, W. M.; Cui, Y.; Guo, X. D. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv. Transl. Res. 2022, 12, 2730–2739.
Yang, Y.; Chen, B. Z.; Zhang, X. P.; Zheng, H.; Li, Z.; Zhang, C. Y.; Guo, X. D. Conductive microneedle patch with electricity-triggered drug release performance for atopic dermatitis treatment. ACS Appl. Mater. Interfaces 2022, 14, 31645–31654.
Qian, L. L.; Jin, F.; Wei, Z. D.; Li, T.; Sun, Z. Y.; Lai, C. T.; Ma, J.; Xiong, R. Y.; Ma, X. Y.; Wang, F. Y. et al. Wearable, self-powered, drug-loaded electronic microneedles for accelerated tissue repair of inflammatory skin disorders. Adv. Funct. Mater. 2023, 33, 2209407.
He, H.; Zhang, S. Z.; Tighe, S.; Son, J.; Tseng, S. C. G. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype. J. Biol. Chem. 2013, 288, 25792–25803.
Bauer, C.; Niculescu-Morzsa, E.; Jeyakumar, V.; Kern, D.; Späth, S. S.; Nehrer, S. Chondroprotective effect of high-molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with m1 macrophages. J. Inflamm. 2016, 13, 31.
Maharjan, A. S.; Pilling, D.; Gomer, R. H. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS One 2011, 6, e26078.
Brochériou, I.; Maouche, S.; Durand, H.; Braunersreuther, V.; Le Naour, G.; Gratchev, A.; Koskas, F.; Mach, F.; Kzhyshkowska, J.; Ninio, E. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: Implication in atherosclerosis. Atherosclerosis 2011, 214, 316–324.
Jaguin, M.; Houlbert, N.; Fardel, O.; Lecureur, V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell. Immunol. 2013, 281, 51–61.
Zhao, Z. Q.; Zhang, B. L.; Chu, H. Q.; Liang, L.; Chen, B. Z.; Zheng, H.; Guo, X. D. A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia. Biomater. Adv. 2022, 133, 112620.
Zhuang, Z. M.; Zhang, Y.; Sun, S. N.; Li, Q.; Chen, K. W.; An, C. F.; Wang, L. B.; Van Den Beucken, J. J. J. P.; Wang, H. N. Control of matrix stiffness using methacrylate-gelatin hydrogels for a macrophage-mediated inflammatory response. ACS Biomater. Sci. Eng. 2020, 6, 3091–3102.
Zhuang, Z. M.; Zhang, Y.; Yang, X. Y.; Yu, T. Z.; Zhang, Y.; Sun, K.; Zhang, Y. G.; Cheng, F.; Zhang, L. J.; Wang, H. N. Matrix stiffness regulates the immunomodulatory effects of mesenchymal stem cells on macrophages via AP1/TSG-6 signaling pathways. Acta Biomater. 2022, 149, 69–81.
Li, J. Y.; Feng, Y. H.; He, Y. T.; Hu, L. F.; Liang, L.; Zhao, Z. Q.; Chen, B. Z.; Guo, X. D. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomater. 2022, 153, 308–319.
Xu, Z. Y.; Gao, L. J.; Chen, P. Y.; Yan, L. T. Diffusive transport of nanoscale objects through cell membranes: A computational perspective. Soft Matter 2020, 16, 3869–3881.
Burov, S.; Tabei, S. M. A.; Huynh, T.; Murrell, M. P.; Philipson, L. H.; Rice, S. A.; Gardel, M. L.; Scherer, N. F.; Dinner, A. R. Distribution of directional change as a signature of complex dynamics. Proc. Natl. Acad. Sci. USA 2013, 110, 19689–19694.
Tabei, S. M. A.; Burov, S.; Kim, H. Y.; Kuznetsov, A.; Huynh, T.; Jureller, J.; Philipson, L. H.; Dinner, A. R.; Scherer, N. F. Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. USA 2013, 110, 4911–4916.