AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning microstructures of Mg-Ce-Ni hydrogen storage alloys via Cu and carbon nanotube additions

Linlin Zhang1,2Liang Xiong3( )Bingyang Gao3Qingyun Shi1,2Ying Wang1Zhiya Han3Zhenhua Zhang3Chunli Wang1( )Limin Wang1,2Yong Cheng1( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Purification Equipment Research Institute of CSIC, Handan 056002, China
Show Author Information

Graphical Abstract

In this study, hydrogen storage alloys with enhanced properties are obtained by preparing amorphous/nanocrystalline structures to modulate the internal microstructure and by adding Cu and carbon nanotubes (CNTs) to enhance the surface properties.

Abstract

Mg-based alloys are regarded as highly promising materials for hydrogen storage. Despite significant improvements of the properties for Mg-based alloys, challenges such as slow hydrogen absorption/desorption kinetics and high thermodynamic stability continue to limit their practical application. In this study, to assess hydrogen storage alloys with enhanced properties, incorporating both internal microstructure modulation through the preparation of amorphous/nanocrystalline structures and surface property enhancement with the addition of Cu and carbon nanotubes (CNTs), the kinetic properties of activation and hydrogenation, thermodynamic properties, and dehydrogenation kinetics are tested. The results reveal a complementary interaction between the added Cu and CNTs, contributing to the superior hydrogen storage performance observed in sample 7A-2Cu-1CNTs with an amorphous/nanocrystalline structure compared to the other experimental samples. Additionally, the samples are fully activated after the initial hydrogen absorption and desorption cycle, demonstrating outstanding hydrogenation kinetics under both high and low temperature experimental conditions. Particularly noteworthy is that the hydrogen absorption exceeds 1.8 wt.% within one hour at 333 K. Furthermore, the activation energy for dehydrogenation is decreased to 64.71 kJ·mol–1. This research may offer novel insights for the design of new-type Mg-based hydrogen storage alloys, which possess milder conditions for hydrogen absorption and desorption.

Electronic Supplementary Material

Download File(s)
6713_ESM.pdf (1.4 MB)

References

[1]

Yartys, V. A.; Lototskyy, M. V.; Akiba, E.; Albert, R.; Antonov, V. E.; Ares, J. R.; Baricco, M.; Bourgeois, N.; Buckley, C. E.; Bellosta von Colbe, J. M. et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859.

[2]

Ouyang, L. Z.; Chen, K.; Jiang, J.; Yang, X. S.; Zhu, M. Hydrogen storage in light-metal based systems: A review. J. Alloys Compd. 2020, 829, 154597.

[3]

Yu, H. X.; Pan, J. N.; Zhang, Y. X.; Wang, L. L.; Ji, H. C.; Xu, K. Y.; Zhi, T.; Zhuang, Z. C. Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution. Nano Res. 2024, 17, 4782–4789

[4]

Yin, W. N.; Yuan, L. X.; Huang, H.; Cai, Y. T.; Pan, J. N.; Sun, N.; Zhang, Q. Y.; Shu, Q. H.; Gu, C.; Zhuang, Z. C. et al. Strategies to accelerate bubble detachment for efficient hydrogen evolution. Chin. Chem. Lett. 2024, 35, 108351.

[5]

Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

[6]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

[7]

Zhang, Z. L.; Cai, J.; Zhu, H.; Zhuang, Z. C.; Xu, F. P.; Hao, J. C.; Lu, S. L.; Li, H. N.; Duan, F.; Du, M. L. Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms. Chem. Eng. J. 2020, 392, 123655.

[8]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624

[9]

Cheng, X. L.; Wang, L. L.; Xie, L. B.; Sun, C.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Liu, S. J.; Zhao, Q. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photo-catalytic hydrogen evolution reaction. Chem. Eng. J. 2022, 439, 135757.

[10]

Kojima, Y. Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrogen Energy 2019, 44, 18179–18192.

[11]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[12]

Zhao, S. L.; Liang, L.; Liu, B. Z.; Wang, L. M.; Liang, F. Superior dehydrogenation performance of α-AlH3 catalyzed by Li3N: Realizing 8.0 wt.% capacity at 100 °C. Small 2022, 18, 210793

[13]

Ouyang, L. Z.; Liu, F.; Wang, H.; Liu, J. W.; Yang, X. S.; Sun, L. X.; Zhu, M. Magnesium-based hydrogen storage compounds: A review. J. Alloys Compd. 2020, 832, 154865.

[14]

Ren, L.; Li, Y. H.; Zhang, N.; Li, Z.; Lin, X.; Zhu, W.; Lu, C.; Ding, W. J.; Zou, J. X. Nanostructuring of Mg-based hydrogen storage materials: Recent advances for promoting key applications. Nano-Micro Lett. 2023, 15, 93.

[15]

Zhang, C. M.; Liang, L.; Zhao, S. L.; Wu, Z. J.; Wang, S. H.; Yin, D. M.; Wang, Q. S.; Wang, L. M.; Wang, C. L.; Cheng, Y. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Res. 2023, 16, 9426–9434.

[16]

Yuan, Z. M.; Li, X. M.; Li, T.; Zhai, T. T.; Lin, Y. H.; Feng, D. C.; Zhang, Y. H. Improved hydrogen storage performances of nanocrystalline RE5Mg41-type alloy synthesized by ball milling. J. Energy Storage 2022, 46, 103702.

[17]

Qi, Y.; Zhang, X.; Zhang, W.; Li, J.; Yuan, Z. M.; Guo, S. H.; Zhang, Y. H. Hydrogen storage performances of La-Sm-Mg-Ni alloy prepared by casting and ball milling. J. Phys. Chem. Solids 2023, 174, 111165.

[18]

Yuan, Z. R.; Li, S. H.; Wang, K. W.; Xu, N.; Sun, W. W.; Sun, L. T.; Cao, H. J.; Lin, H. J.; Zhu, Y. F.; Zhang, Y. In-situ formed Pt nano-clusters serving as destabilization-catalysis bi-functional additive for MgH2. Chem. Eng. J. 2022, 435, 135050.

[19]

Liu, B.; Zhang, B.; Chen, X.; Lv, Y.; Huang, H.; Yuan, J.; Lv, W.; Wu, Y. Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst. Mater. Today Nano 2022, 17, 100168.

[20]

Peng, C.; Li, Y. T.; Zhang, Q. G. Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in-situ hydrogenolysis of nickelocene in ball milling process. J. Alloys Compd. 2022, 900, 163547.

[21]

Dan, L.; Wang, H.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. H2 plasma reducing Ni nanoparticles for superior catalysis on hydrogen sorption of MgH2. ACS Appl. Energy. Mater. 2022, 5, 4976–4984

[22]

Lu, X.; Zhang, L. T.; Yu, H. J.; Lu, Z. Y.; He, J. H.; Zheng, J. G.; Wu, F. Y.; Chen, L. X. Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem. Eng. J. 2021, 422, 130101.

[23]
Shi, Q. Y.; Gao, Y. X.; Zhao, S. L.; Zhang, C. M.; Liu, C.; Wang, C. L.; Wang, S. H.; Li, Y. Z.; Yin, D. M.; Wang, L. M. et al. Interfacial engineering of fluorinated TiO2 nanosheets with abundant oxygen vacancies for boosting the hydrogen storage performance of MgH2. Small, in press, https://doi.org/10.1002/smll.202307965.
[24]

Vyas, D.; Jain, P.; Khan, J.; Kulshrestha, V.; Jain, A.; Jain, I. P. Effect of Cu catalyst on the hydrogenation and thermodynamic properties of Mg2Ni. Int. J. Hydrogen Energy 2012, 37, 3755–3760.

[25]

Zhang, C.; Wang, H.; Ouyang, L. Z.; Lin, H. J.; Zhu, M. Effect of Cu on dehydrogenation and thermal stability of amorphous Mg-Ce-Ni-Cu alloys. Prog. Nat. Sci. Mater. Int. 2017, 27, 622–626.

[26]

Zhang, Y. H.; Li, B. W.; Ren, H. P.; Guo, S. H.; Zhao, D. L.; Wang, X. L. Hydrogenation and dehydrogenation behaviours of nanocrystalline Mg20Ni10– x Cu x ( x = 0–4) alloys prepared by melt spinning. Int. J. Hydrogen Energy 2010, 35, 2040–2047.

[27]

Kong, Q. Q.; Zhang, H. H.; Yuan, Z. L.; Liu, J. M.; Li, L. X.; Fan, Y. P.; Fan, G. X.; Liu, B. Z. Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2. ACS Sustain. Chem. Eng. 2020, 8, 4755–4763.

[28]

Zou, G. D.; Liu, B. Z.; Guo, J. X.; Zhang, Q. R.; Fernandez, C.; Peng, Q. M. Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium alanates. ACS Appl. Mater. Interfaces 2017, 9, 7611–7618.

[29]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[30]

Wang, L. L.; Zhang, Y. X.; Gu, C.; Yu, H. X.; Zhuang, Y. L.; Zhuang, Z. C. Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution. Nano Res. 2024, 17, 3586–3602.

[31]

Yong, H.; Wei, X.; Hu, J. F.; Yuan, Z. M.; Wu, M.; Zhao, D. L.; Zhang, Y. H. Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg-Ce-Y based alloy. Renew. Energy 2020, 162, 2153–2165.

[32]

Yong, H.; Wei, X.; Hu, J. F.; Yuan, Z. M.; Guo, S. H.; Zhao, D. L.; Zhang, Y. H. Hydrogen storage behavior of Mg-based alloy catalyzed by carbon-cobalt composites. J. Magnesium Alloys 2021, 9, 1977–1988.

[33]

Huang, T. P.; Huang, X.; Hu, C. Z.; Wang, J.; Liu, H. B.; Xu, H.; Sun, F. Z.; Ma, Z. W.; Zou, J. X.; Ding, W. J. MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2. Chem. Eng. J. 2021, 421, 127851.

[34]

Hou, Q. H.; Zhang, J. Q.; Guo, X. T.; Xu, G. Z.; Yang, X. L. Synthesis of low-cost biomass charcoal-based Ni nanocatalyst and evaluation of their kinetic enhancement of MgH2. Int. J. Hydrogen Energy 2022, 47, 15209–15223.

[35]

Gao, H. G.; Shi, R.; Zhu, J. L.; Liu, Y. N.; Shao, Y. T.; Zhu, Y. F.; Zhang, J. G.; Li, L. Q.; Hu, X. H. Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2. Appl. Surf. Sci. 2021, 564, 150302.

[36]

Meng, Q. F.; Huang, Y. Q.; Ye, J. K.; Xia, G. L.; Wang, G. F.; Dong, L. X.; Yang, Z. X.; Yu, X. B. Electrospun carbon nanofibers with in-situ encapsulated Ni nanoparticles as catalyst for enhanced hydrogen storage of MgH2. J. Alloys Compd. 2021, 851, 156874.

[37]

Yao, P. Y.; Jiang, Y.; Liu, Y.; Wu, C. Z.; Chou, K. C.; Lyu, T.; Li, Q. Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2. J. Magnesium Alloys 2020, 8, 461–471.

[38]

Li, X. J.; Fu, Y. K.; Xie, Y. C.; Cong, L.; Yu, H.; Zhang, L.; Li, Y.; Han, S. M. Effect of Ni/tubular g-C3N4 on hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2021, 46, 33186–33196.

[39]

Hanada, N.; Ichikawa, T.; Fujii, H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 2005, 109, 7188–7194

[40]

Hou, X. J.; Hu, R.; Zhang, T. B.; Kou, H. C.; Li, J. S. Hydrogenation behavior of high-energy ball milled amorphous Mg2Ni catalyzed by multi-walled carbon nanotubes. Int. J. Hydrogen Energy 2013, 38, 16168–16176.

[41]

Zhang, Y. H.; Li, L. W.; Feng, D. C.; Gong, P. F.; Shang, H. W.; Guo, S. H. Hydrogen storage behavior of nanocrystalline and amorphous La-Mg-Ni-based LaMg12-type alloys synthesized by mechanical milling. Trans. Nonferrous Met. Soc. China 2017, 27, 551–561.

[42]

Chen, R. R.; Ding, X.; Chen, X. Y.; Li, X. Z.; Guo, J. J.; Su, Y. Q.; Ding, H. S.; Fu, H. Z. Tunable eutectic structure and de-/hydrogenation behavior via Cu substitution in Mg-Ni alloy. J. Power Sources 2018, 401, 186–194.

[43]

Jiang, X. J.; Wu, Y.; Fu, K.; Zheng, J.; Li, X. G. Hydrogen storage properties of LaMg4Cu. Intermetallics 2018, 95, 73–79.

[44]

Shao, H. Y.; Wang, Y. T.; Xu, H. R.; Li, X. G. Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J. Solid State Chem. 2005, 178, 2211–2217.

[45]

Shao, H. Y.; Wang, Y. T.; Xu, H. R.; Li, X. G. Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction. Mater. Sci. Eng. B 2004, 110, 221–226.

[46]

Au, Y. S.; Ponthieu, M.; van Zwienen, R.; Zlotea, C.; Cuevas, F.; de Jong, K. P.; de Jongh, P. E. Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics. J. Mater. Chem. A 2013, 1, 9983–9991.

[47]

Pourabdoli, M.; Raygan, S.; Abdizadeh, H.; Uner, D. Corrigendum to “determination of kinetic parameters and hydrogen desorption characteristics of MgH2-10 wt.% (9Ni-2Mg-Y) nano-composite” [Int J Hydrogen Energy 38 (2013) 11910–11919]. Int. J. Hydrogen Energy 2016, 41, 6618.

[48]

Milošević, S.; Kurko, S.; Pasquini, L.; Matović, L.; Vujasin, R.; Novaković, N.; Novaković, J. G. Fast hydrogen sorption from MgH2-VO2(B) composite materials. J. Power Sources 2016, 307, 481–488.

[49]

Montone, A.; Aurora, A.; Gattia, D. M.; Antisari, M. V. Effect of hydrogen pressure and temperature on the reaction kinetics between Fe-doped Mg and hydrogen gas. J. Alloys Compd. 2011, 509, S580–S583.

[50]

Kimura, T.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Hydrogen absorption of catalyzed magnesium below room temperature. Int. J. Hydrogen Energy 2013, 38, 13728–13733.

[51]

Song, F.; Yao, J. W.; Yong, H.; Wang, S.; Xu, X. L.; Chen, Y. W.; Zhang, L.; Hu, J. F. Investigation of ball-milling process on microstructure, thermodynamics and kinetics of Ce-Mg-Ni-based hydrogen storage alloy. Int. J. Hydrogen Energy 2023, 48, 11274–11286.

[52]

Yong, H.; Guo, S. H.; Yuan, Z. M.; Qi, Y.; Zhao, D. L.; Zhang, Y. H. Phase transformation, thermodynamics and kinetics property of Mg90Ce5RE5 (RE = La, Ce, Nd) hydrogen storage alloys. J. Mater. Sci. Technol. 2020, 51, 84–93.

[53]

Kang, H. L.; Yong, H.; Wang, J. Z.; Xu, S. X.; Li, L. J.; Wang, S.; Hu, J. F.; Zhang, Y. H. Characterization on the kinetics and thermodynamics of Mg-based hydrogen storage alloy by the multiple alloying of Ce, Ni and Y elements. Mater. Charact. 2021, 182, 111583.

[54]

Qiao, W. F.; Yin, D. M.; Zhao, S. L.; Ding, N.; Liang, L.; Wang, C. L.; Wang, L. M.; He, M.; Cheng, Y. Effects of Cu doping on the hydrogen storage performance of Ti-Mn-based, AB2-type alloys. Chem. Eng. J. 2023, 465, 142837.

[55]

Cai, W. P.; Zhou, X. S.; Xia, L. D.; Jiang, K. L.; Peng, S. M.; Long, X. G.; Liang, J. H. Effects of carbon nanotubes on the dehydrogenation behavior of magnesium hydride at relatively low temperatures. J. Mater. Chem. A 2014, 2, 16369–16372.

Nano Research
Pages 7203-7211
Cite this article:
Zhang L, Xiong L, Gao B, et al. Tuning microstructures of Mg-Ce-Ni hydrogen storage alloys via Cu and carbon nanotube additions. Nano Research, 2024, 17(8): 7203-7211. https://doi.org/10.1007/s12274-024-6713-y
Topics:

434

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 February 2024
Revised: 06 April 2024
Accepted: 21 April 2024
Published: 01 June 2024
© Tsinghua University Press 2024
Return