AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanoparticle targeting cGAS-STING signaling in disease therapy

Lan Zhou1,§Yu Huang2,§Yuzhang Wu3( )Shupei Tang4( )
Frontier Medical Training Brigade, Third Military Medical University, Hutubi 831200, China
Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
Institute of Immunology, Third Military Medical University, Chongqing 400038, China
Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse 857000, China

§ Lan Zhou and Yu Huang contributed equally to this work.

Show Author Information

Graphical Abstract

The cGAS-STING signaling pathway is crucial for immune response activation in various diseases, and nanomedicines targeting this pathway offer significant clinical benefits through targeted delivery and controlled drug release. This comprehensive review focuses on the most recent progress of nanoplatforms targeting cGAS-STING in disease therapy, aiming to provide references and guidelines for further design and optimization of nanomedicines.

Abstract

The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon (IFN) genes (cGAS-STING) signaling pathway is crucial for sensing abnormal DNA accumulation in the cytoplasm. Once binds to abnormal DNA, cGAS catalyzes the production of second messenger cyclic dinucleotides, followed by the activation of downstream STING. This activation induces the expression of type I interferon and other inflammatory cytokines, ultimately initiating an immune response. Due to the involvement of the cGAS-STING pathway in various diseases, including infection, tumor, autoimmune disease and kidney disease, ongoing research is focused on developing drugs and treatment methods to target and regulate this pathway. With the development of nanotechnology, nanomedicines targeting cGAS-STING signaling are of great significance in clinical applications due to their targeted delivery, controlled drug release, improved solubility, multifunctionality, and enhanced stability. This comprehensive review focuses on the most recent progress of nanoplatforms targeting cGAS-STING in disease therapy, aiming to provide references and guidelines for further design and optimization of nanomedicines.

References

[1]

Wu, J. X.; Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 2014, 32, 461–488.

[2]

Wan, D. S.; Jiang, W.; Hao, J. W. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front. Immunol. 2020, 11, 615.

[3]

Li, B. W.; Xia, Y. P.; Hu, B. Infection and atherosclerosis: TLR-dependent pathways. Cell. Mol. Life Sci. 2020, 77, 2751–2769.

[4]

Ishikawa, H.; Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008, 455, 674–678.

[5]

Chen, Q.; Sun, L. J.; Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016, 17, 1142–1149.

[6]

Motwani, M.; Pesiridis, S.; Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674.

[7]

Dou, Z. X.; Ghosh, K.; Vizioli, M. G.; Zhu, J. J.; Sen, P.; Wangensteen, K. J.; Simithy, J.; Lan, Y. M.; Lin, Y. P.; Zhou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017, 550, 402–406.

[8]

Glück, S.; Guey, B.; Gulen, M. F.; Wolter, K.; Kang, T. W.; Schmacke, N.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070.

[9]

Mackenzie, K. J.; Carroll, P.; Martin, C. A.; Murina, O.; Fluteau, A.; Simpson, D. J.; Olova, N.; Sutcliffe, H.; Rainger, J. K.; Leitch, A. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 2017, 548, 461–465

[10]

Gui, X.; Yang, H.; Li, T.; Tan, X. J.; Shi, P. Q.; Li, M. H.; Du, F. H.; Chen, Z. J. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 2019, 567, 262–266.

[11]

Liu, D.; Wu, H.; Wang, C. G.; Li, Y. J.; Tian, H. B.; Siraj, S.; Sehgal, S. A.; Wang, X. H.; Wang, J.; Shang, Y. L. et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019, 26, 1735–1749.

[12]

Wu, J. J.; Chen, Y. J.; Dobbs, N.; Sakai, T.; Liou, J.; Miner, J. J.; Yan, N. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J. Exp. Med. 2019, 216, 867–883.

[13]

Cerboni, S.; Jeremiah, N.; Gentili, M.; Gehrmann, U.; Conrad, C.; Stolzenberg, M. C.; Picard, C.; Neven, B.; Fischer, A.; Amigorena, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 2017, 214, 1769–1785.

[14]

Ma, Z.; Damania, B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe 2016, 19, 150–158.

[15]

Liu, N. X.; Pang, X. X.; Zhang, H.; Ji, P. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front. Immunol. 2022, 12, 814709.

[16]

Hu, Y.; Chen, B. J.; Yang, F.; Su, Y.; Yang, D. S.; Yao, Y.; Wang, S. X.; Wu, Y. C.; Tao, L. S.; Xu, T. Emerging role of the cGAS-STING signaling pathway in autoimmune diseases: Biologic function, mechanisms and clinical prospection. Autoimmun. Rev. 2022, 21, 103155.

[17]

Vinuesa, C. G.; Grenov, A.; Kassiotis, G. Innate virus-sensing pathways in B cell systemic autoimmunity. Science 2023, 380, 478–484.

[18]

Du, H. S.; Xu, T. M.; Cui, M. H. cGAS-STING signaling in cancer immunity and immunotherapy. Biomed. Pharmacother. 2021, 133, 110972

[19]

Samson, N.; Ablasser, A. The cGAS-STING pathway and cancer. Nat. Cancer 2022, 3, 1452–1463.

[20]

Chin, E. N.; Sulpizio, A.; Lairson, L. L. Targeting STING to promote antitumor immunity. Trends Cell Biol 2023, 33, 189–203.

[21]

Chung, K. W.; Dhillon, P.; Huang, S. Z.; Sheng, X.; Shrestha, R.; Qiu, C. X.; Kaufman, B. A.; Park, J.; Pei, L. M.; Baur, J. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019, 30, 784–799.e5.

[22]

Wang, L.; Zhang, Y. W.; Ren, Y. F.; Yang, X.; Ben, H. J.; Zhao, F. L.; Yang, S. J.; Wang, L.; Qing, J. Pharmacological targeting of cGAS/STING-YAP axis suppresses pathological angiogenesis and ameliorates organ fibrosis. Eur. J. Pharmacol. 2022, 932, 175241.

[23]

Gamdzyk, M.; Doycheva, D. M.; Araujo, C.; Ocak, U.; Luo, Y. J.; Tang, J. P.; Zhang, J. H. cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: Possible involvement of LINE-1. Mol. Neurobiol. 2020, 57, 2600–2619

[24]

Paul, B. D.; Snyder, S. H.; Bohr, V. A. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci. 2021, 44, 83–96.

[25]

Fang, R.; Jiang, Q. F.; Yu, X. Y.; Zhao, Z.; Jiang, Z. F. Recent advances in the activation and regulation of the cGAS-STING pathway. Adv. Immunol. 2022, 156, 55–102.

[26]

Sun, L. J.; Wu, J. X.; Du, F. H.; Chen, X.; Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339, 786–791.

[27]

Li, X.; Shu, C.; Yi, G.H.; Chaton, C.; Shelton, C.; Diao, J. S.; Zuo, X. B.; Kao, C. C.; Herr, A. B.; Li, P. W. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 2013, 39, 1019–1031.

[28]

Civril, F.; Deimling, T.; de Oliveira Mann, C. C.; Ablasser, A.; Moldt, M.; Witte, G.; Hornung, V.; Hopfner, K. P. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013, 498, 332–337.

[29]

Wu, J. X.; Sun, L. J.; Chen, X.; Du, F. H.; Shi, H. P.; Chen, C.; Chen, Z. J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013, 339, 826–830.

[30]

Ishikawa, H.; Ma, Z.; Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792.

[31]

Dobbs, N.; Burnaevskiy, N.; Chen, D. D.; Gonugunta, V.; Alto, N.; Yan, N. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 2015, 18, 157–168.

[32]

Zhang, C. G.; Shang, G. J.; Gui, X.; Zhang, X. W.; Bai, X. C.; Chen, Z. J. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019, 567, 394–398.

[33]

Tesser, A.; Piperno, G. M.; Pin, A.; Piscianz, E.; Boz, V.; Benvenuti, F.; Tommasini, A. Priming of the cGAS-STING-TBK1 pathway enhances LPS-induced release of type I interferons. Cells 2021, 10, 785.

[34]

Yum, S.; Li, M. H.; Fang, Y.; Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl. Acad. Sci. USA 2021, 118, e2100225118.

[35]

Hopfner, K. P.; Hornung, V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 2020, 21, 501–521.

[36]

Abe, T.; Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 2014, 88, 5328–5341.

[37]

Stempel, M.; Chan, B.; Juranić Lisnić, V.; Krmpotić, A.; Hartung, J.; Paludan, S. R.; Füllbrunn, N.; Lemmermann, N. A.; Brinkmann, M. M. The herpesviral antagonist m152 reveals differential activation of STING-dependent IRF and NF-κB signaling and STING's dual role during MCMV infection. EMBO J. 2019, 38, e100983.

[38]

Levine, B.; Kroemer, G. Biological functions of autophagy genes: A disease perspective. Cell 2019, 176, 11–42.

[39]

Deretic, V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021, 54, 437–453.

[40]

Decout, A.; Katz, J. D.; Venkatraman, S.; Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 2021, 21, 548–569.

[41]

Woo, S. R.; Fuertes, M. B.; Corrales, L.; Spranger, S.; Furdyna, M.; Leung, M. K.; Duggan, R.; Wang, Y.; Barber, G.; Fitzgerald, K. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014, 41, 830–842.

[42]

Li, W. W.; Lu, L.; Lu, J. J.; Wang, X. R.; Yang, C.; Jin, J. S.; Wu, L. L.; Hong, X. C.; Li, F. L.; Cao, D. Q. et al. cGAS-STING-mediated DNA sensing maintains CD8+ T cell stemness and promotes antitumor T cell therapy. Sci. Transl. Med. 2020, 12, eaay9013.

[43]

Takashima, K.; Takeda, Y.; Oshiumi, H.; Shime, H.; Okabe, M.; Ikawa, M.; Matsumoto, M.; Seya, T. STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation. Biochem. Biophys. Res. Commun. 2016, 478, 1764–1771.

[44]

Parkes, E. E.; Walker, S. M.; Taggart, L. E.; McCabe, N.; Knight, L. A.; Wilkinson, R.; McCloskey, K. D.; Buckley, N. E.; Savage, K. I.; Salto-Tellez, M. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl. Cancer Inst. 2017, 109, djw199.

[45]

Corrales, L.; Glickman, L. H.; McWhirter, S. M.; Kanne, D.; Sivick, K.; Katibah, G.; Woo, S. R.; Lemmens, E.; Banda, T.; Leong, J. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015, 11, 1018–1030.

[46]

Ghaffari, A.; Peterson, N.; Khalaj, K.; Vitkin, N.; Robinson, A.; Francis, J. A.; Koti, M. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br. J. Cancer 2018, 119, 440–449.

[47]

Wang, X.; Teng, F. F.; Kong, L.; Yu, J. M. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 2016, 9, 5023–5039.

[48]

Sharma, P.; Goswami, S.; Raychaudhuri, D.; Siddiqui, B. A.; Singh, P.; Nagarajan, A.; Liu, J. L.; Subudhi, S. K.; Poon, C.; Gant, K. L. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 2023, 186, 1652–1669.

[49]

Baird, J. R.; Friedman, D.; Cottam, B.; Dubensky, T. W.; Kanne, D. B.; Bambina, S.; Bahjat, K.; Crittenden, M. R.; Gough, M. J. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 2016, 76, 50–61.

[50]

Fu, J.; Kanne, D. B.; Leong, M.; Glickman, L. H.; Mcwhirter, S. M.; Lemmens, E.; Mechette, K.; Leong, J. J.; Lauer, P.; Liu, W. Q. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 2015, 7, 283ra52.

[51]

Du, J. M.; Qian, M. J.; Yuan, T.; Chen, R. H.; He, Q. J.; Yang, B.; Ling, Q.; Zhu, H. cGAS and cancer therapy: A double-edged sword. Acta Pharmacol. Sin. 2022, 43, 2202–2211

[52]

Hornung, V.; Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol. 2010, 10, 123–130.

[53]

Li, X. D.; Wu, J. X.; Gao, D. X.; Wang, H.; Sun, L. J.; Chen, Z. J. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 2013, 341, 1390–1394.

[54]

Paijo, J.; Döring, M.; Spanier, J.; Grabski, E.; Nooruzzaman, M.; Schmidt, T.; Witte, G.; Messerle, M.; Hornung, V.; Kaever, V. et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog. 2016, 12, e1005546

[55]

Zhang, G. G.; Chan, B.; Samarina, N.; Abere, B.; Weidner-Glunde, M.; Buch, A.; Pich, A.; Brinkmann, M. M.; Schulz, T. F. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc. Natl. Acad. Sci. USA 2016, 113, E1034–E1043.

[56]

Lio, C. W. J.; McDonald, B.; Takahashi, M.; Dhanwani, R.; Sharma, N.; Huang, J.; Pham, E.; Benedict, C. A.; Sharma, S. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J. Virol. 2016, 90, 7789–7797

[57]

Lam, E.; Falck-Pedersen, E. Unabated adenovirus replication following activation of the cGAS/STING-dependent antiviral response in human cells. J. Virol. 2014, 88, 14426–14439.

[58]

Latif, M. B.; Raja, R.; Kessler, P. M.; Sen, G. C. Relative contributions of the cGAS-STING and TLR3 signaling pathways to attenuation of herpes simplex virus 1 replication. J. Virol. 2020, 94, e01717–19.

[59]

Georgana, I.; Sumner, R. P.; Towers, G. J.; Maluquer De Motes, C. Virulent poxviruses inhibit DNA sensing by preventing STING activation. J. Virol. 2018, 92, e02145–17.

[60]

Tabtieng, T.; Lent, R. C.; Kaku, M.; Sanchez, A. M.; Gaglia, M. M.; Damania, B. Caspase-mediated regulation and cellular heterogeneity of the cGAS/STING pathway in Kaposi's sarcoma-associated herpesvirus infection. mBio 2022, 13, e0244622.

[61]

Domizio, J. D.; Gulen, M. F.; Saidoune, F.; Thacker, V. V.; Yatim, A.; Sharma, K.; Nass, T.; Guenova, E.; Schaller, M.; Conrad, C. et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022, 603, 145–151.

[62]

Dey, B.; Dey, R. J.; Cheung, L. S.; Pokkali, S.; Guo, H. D.; Lee, J. H.; Bishai, W. R. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 2015, 21, 401–406.

[63]

Elmanfi, S.; Yilmaz, M.; Ong, W. W. S.; Yeboah, K. S.; Sintim, H. O.; Gürsoy, M.; Könönen, E.; Gürsoy, U. K. Bacterial cyclic dinucleotides and the cGAS-cGAMP-STING pathway: A role in periodontitis. Pathogens 2021, 10, 675.

[64]

Jenal, U.; Reinders, A.; Lori, C. Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Microbiol. 2017, 15, 271–284.

[65]

Huang, L. S.; Hong, Z. G.; Wu, W.; Xiong, S. Q.; Zhong, M.; Gao, X. P.; Rehman, J.; Malik, A. B. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 2020, 52, 475–486.e5

[66]

Moretti, J.; Roy, S.; Bozec, D.; Martinez, J.; Chapman, J. R.; Ueberheide, B.; Lamming, D. W.; Chen, Z. J.; Horng, T.; Yeretssian, G. et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 2017, 171, 809–823.e13.

[67]

Sander, L. E.; Davis, M. J.; Boekschoten, M. V.; Amsen, D.; Dascher, C. C.; Ryffel, B.; Swanson, J. A.; Müller, M.; Blander, J. M. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 2011, 474, 385–389.

[68]

Gao, D. X.; Li, T.; Li, X. D.; Chen, X.; Li, Q. Z.; Wight-Carter, M.; Chen, Z. J. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl. Acad. Sci. USA 2015, 112, E5699–E5705.

[69]

Kato, Y.; Park, J.; Takamatsu, H.; Konaka, H.; Aoki, W.; Aburaya, S.; Ueda, M.; Nishide, M.; Koyama, S.; Hayama, Y. et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 1507–1515.

[70]

An, J.; Durcan, L.; Karr, R. M.; Briggs, T. A.; Rice, G. I.; Teal, T. H.; Woodward, J. J.; Elkon, K. B. Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2017, 69, 800–807.

[71]

Kyttaris, V. C.; Zhang, Z.; Kampagianni, O.; Tsokos, G. C. Calcium signaling in systemic lupus erythematosus T cells: A treatment target. Arthritis Rheum. 2011, 63, 2058–2066.

[72]

Zhang, W. J.; Zhou, Q.; Xu, W.; Cai, Y. X.; Yin, Z. N.; Gao, X. M.; Xiong, S. D. DNA-dependent activator of interferon-regulatory factors (DAI) promotes lupus nephritis by activating the calcium pathway. J. Biol. Chem. 2013, 288, 13534–13550.

[73]

Bouis, D.; Kirstetter, P.; Arbogast, F.; Lamon, D.; Delgado, V.; Jung, S.; Ebel, C.; Jacobs, H.; Knapp, A. M.; Jeremiah, N. et al. Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. J. Allergy Clin. Immunol. 2019, 143, 712–725.e5.

[74]

Terry, D. M.; Devine, S. E. Aberrantly high levels of somatic LINE-1 expression and retrotransposition in human neurological disorders. Front. Genet. 2020, 10, 1244.

[75]

Gall, A.; Treuting, P.; Elkon, K. B.; Loo, Y. M.; Gale, M; Barber, G.; Stetson, D. Jr. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity. 2012, 36, 120–131.

[76]

Cuadrado, E.; Jansen, M. H.; Anink, J.; De Filippis, L.; Vescovi, A. L.; Watts, C.; Aronica, E.; Hol, E. M.; Kuijpers, T. W. Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi-Goutières syndrome. Brain 2013, 136, 245–258.

[77]

Lodi, L.; Melki, I.; Bondet, V.; Seabra, L.; Rice, G. I.; Carter, E.; Lepelley, A.; Martin-Niclós, M. J.; Al Adba, B.; Bader-Meunier, B. et al. Differential expression of interferon-alpha protein provides clues to tissue specificity across type I interferonopathies. J. Clin. Immunol. 2021, 41, 603–609.

[78]

Ahn, J.; Son, S.; Oliveira, S. C.; Barber, G. N. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep. 2017, 21, 3873–3884.

[79]

Balci, S.; Ekinci, R. M. K.; de Jesus, A. A.; Goldbach-Mansky, R.; Yilmaz, M. Baricitinib experience on STING-associated vasculopathy with onset in infancy: A representative case from Turkey. Clin. Immunol. 2020, 212, 108273.

[80]

Martin, G.; Blomquist, C.; Henare, K.; Jirik, F. R. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci. Rep. 2019, 9, 14281.

[81]

Lodi, L.; Mastrolia, M. V.; Bello, F.; Rossi, G. M.; Angelotti, M. L.; Crow, Y. J.; Romagnani, P.; Vaglio, A. Type I interferon-related kidney disorders. Kidney Int. 2022, 101, 1142–1159.

[82]

Bai, J. L.; Liu, F. cGAS-STING signaling and function in metabolism and kidney diseases. J. Mol. Cell Biol. 2021, 13, 728–738.

[83]

Maekawa, H.; Inoue, T.; Ouchi, H.; Jao, T. M.; Inoue, R.; Nishi, H.; Fujii, R.; Ishidate, F.; Tanaka, T.; Tanaka, Y. et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 2019, 29, 1261–1273.e6.

[84]

Gong, W.; Lu, L. L.; Zhou, Y.; Liu, J. Y.; Ma, H. Y.; Fu, L.; Huang, S. M.; Zhang, Y.; Zhang, A. H.; Jia, Z. J. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am. J. Physiol. Renal Physiol. 2021, 320, F608–F616.

[85]

Zhang, D.; Liu, Y. T.; Zhu, Y. Z.; Zhang, Q.; Guan, H. X.; Liu, S. D.; Chen, S. S.; Mei, C.; Chen, C.; Liao, Z. Y. et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 2022, 24, 766–782.

[86]

Khedr, S.; Dissanayake, L. V.; Palygin, O.; Staruschenko, A. Potential role of cGAS‐STING pathway in the induction of diabetic kidney disease. FASEB J. 2020, 34, 1.

[87]

Sliter, D. A.; Martinez, J.; Hao, L.; Chen, X.; Sun, N.; Fischer, T. D.; Burman, J. L.; Li, Y.; Zhang, Z.; Narendra, D. P. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 2018, 561, 258–262.

[88]

Donnelly, C. R.; Jiang, C. Y.; Andriessen, A. S.; Wang, K. Y.; Wang, Z. L.; Ding, H. P.; Zhao, J. L.; Luo, X.; Lee, M. S.; Lei, Y. L. et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature 2021, 591, 275–280.

[89]

Roy, E. R.; Wang, B. P.; Wan, Y. W.; Chiu, G.; Cole, A.; Yin, Z. R.; Propson, N. E.; Xu, Y.; Jankowsky, J. L.; Liu, Z. D. et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J. Clin. Invest. 2020, 130, 1912–1930.

[90]

Hou, Y. J.; Wei, Y.; Lautrup, S.; Yang, B. M.; Wang, Y.; Cordonnier, S.; Mattson, M. P.; Croteau, D. L.; Bohr, V. A. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING. Proc. Natl. Acad. Sci. USA 2021, 118, e2011226118.

[91]

Luo, X. J.; Li, H. G.; Ma, L. Q.; Zhou, J.; Guo, X.; Woo, S. L.; Pei, Y.; Knight, L. R.; Deveau, M.; Chen, Y. M. et al. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology 2018, 155, 1971–1984.e4.

[92]

Li, Y. J.; Li, X. Y.; Yi, J. M.; Cao, Y. J.; Qin, Z. H.; Zhong, Z. Y.; Yang, W. J. Nanoparticle-mediated STING activation for cancer immunotherapy. Adv. Healthc. Mater. 2023, 12, 2300260.

[93]

Garland, K. M.; Rosch, J. C.; Carson, C. S.; Wang-Bishop, L.; Hanna, A.; Sevimli, S.; Van Kaer, C.; Balko, J. M.; Ascano, M.; Wilson, J. T. Pharmacological activation of cGAS for cancer immunotherapy. Front. Immunol. 2021, 12, 753472.

[94]

Li, Q.; Chen, Q. B.; Yang, X.; Zhang, Y. L.; Lv, L. Y.; Zhang, Z. Y.; Zeng, S. W.; Lv, J. X.; Liu, S. J.; Fu, B. S. Cocktail strategy based on a dual function nanoparticle and immune activator for effective tumor suppressive. J. Nanobiotechnol. 2022, 20, 84.

[95]

Shae, D.; Becker, K. W.; Christov, P.; Yun, D. S.; Lytton-Jean, A. K. R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D. B.; Balko, J. M. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019, 14, 269–278.

[96]

Cheng, N.; Watkins-Schulz, R.; Junkins, R. D.; David, C. N.; Johnson, B. M.; Montgomery, S. A.; Peine, K. J.; Darr, D. B.; Yuan, H.; Mckinnon, K. P. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018, 3, e120638.

[97]

Dosta, P.; Cryer, A. M.; Dion, M. Z.; Shiraishi, T.; Langston, S. P.; Lok, D.; Wang, J. N.; Harrison, S.; Hatten, T.; Ganno, M. L. et al. Investigation of the enhanced antitumour potency of STING agonist after conjugation to polymer nanoparticles. Nat. Nanotechnol. 2023, 18, 1351–1363.

[98]

Nakamura, T.; Miyabe, H.; Hyodo, M.; Sato, Y.; Hayakawa, Y.; Harashima, H. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J. Control. Release 2015, 216, 149–157.

[99]

Spitzer, M. H.; Carmi, Y.; Reticker-Flynn, N. E.; Kwek, S. S.; Madhireddy, D.; Martins, M. M.; Gherardini, P. F.; Prestwood, T. R.; Chabon, J.; Bendall, S. C. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 2017, 168, 487–502.e15.

[100]

Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

[101]

Zhang, X. L.; Wei, M. J.; Zhang, Z. G.; Zeng, Y. R.; Zou, F. H.; Zhang, S. B.; Wang, Z. P.; Chen, F. T.; Xiong, H. L.; Li, Y. F. et al. Risedronate-functionalized manganese-hydroxyapatite amorphous particles: A potent adjuvant for subunit vaccines and cancer immunotherapy. J. Control. Release 2024, 367, 13–26.

[102]

Zhao, X. Y.; Zhang, J. T.; Chen, B. B.; Ding, X. K.; Zhao, N. N.; Xu, F. J. Rough nanovaccines boost antitumor immunity through the enhancement of vaccination cascade and immunogenic cell death induction. Small Methods 2023, 7, 2201595.

[103]

Shae, D.; Baljon, J. J.; Wehbe, M.; Christov, P. P.; Becker, K. W.; Kumar, A.; Suryadevara, N.; Carson, C. S.; Palmer, C. R.; Knight, F. C. et al. Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines. ACS Nano 2020, 14, 9904–9916.

[104]

Liu, H.; Hu, Z. T.; Chen, H. L.; Yan, Y. Z.; Le, Z. C.; Wei, C.; Cao, W. Q.; Chen, T. F.; Chen, Y. M.; Liu, L. X. Self-degradable poly(β-amino ester)s promote endosomal escape of antigen and agonist. J. Control. Release 2022, 345, 91–100.

[105]

Tse, S. W.; McKinney, K.; Walker, W.; Nguyen, M.; Iacovelli, J.; Small, C.; Hopson, K.; Zaks, T.; Huang, E. mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. Mol. Ther. 2021, 29, 2227–2238

[106]

Zhao, Z.; Peng, Y.; Shi, X. A.; Zhao, K. Chitosan derivative composite nanoparticles as adjuvants enhance the cellular immune response via activation of the cGAS-STING pathway. Int. J. Pharm. 2023, 636, 122847.

[107]

Du, S. Y.; Chen, C.; Qu, S. C.; Song, H. X.; Yang, J. J.; Li, Y. Y.; Liu, K. G.; Lu, Q. L.; Luo, W.; Wang, R. T. et al. DNAzyme-assisted nano-herb delivery system for multiple tumor immune activation. Small 2022, 18, 2203942.

[108]

Yu, D. W.; Wang, H.; Liu, H.; Xu, R. Liposomal ATM siRNA delivery for enhancing triple-negaitive breast cancer immune checkpoint blockade therapy. J. Biomater. Appl. 2023, 37, 1835–1846.

[109]

Su, T.; Cheng, F. R.; Qi, J. L.; Zhang, Y.; Zhou, S. R.; Mei, L.; Fu, S. W.; Zhang, F. W.; Lin, S. B.; Zhu, G. Z. Responsive multivesicular polymeric nanovaccines that codeliver STING agonists and neoantigens for combination tumor immunotherapy. Adv. Sci. 2022, 9, 2201895.

[110]

Sun, L.; Gao, H. B.; Wang, H.; Zhou, J. W.; Ji, X. R.; Jiao, Y. X.; Qin, X. J.; Ni, D. L.; Zheng, X. P. Nanoscale metal-organic frameworks-mediated degradation of mutant p53 proteins and activation of cGAS-STING pathway for enhanced cancer immunotherapy. Adv. Sci. 2024, 11, 2307278.

[111]

Podojil, J. R.; Cogswell, A. C.; Chiang, M. Y.; Eaton, V.; Ifergan, I.; Neef, T.; Xu, D.; Meghani, K. A.; Yu, Y. N.; Orbach, S. M. et al. Biodegradable nanoparticles induce cGAS/STING-dependent reprogramming of myeloid cells to promote tumor immunotherapy. Front. Immunol. 2022, 13, 887649.

[112]

Zhao, X.; Wang, Y. Y.; Jiang, W. X.; Wang, Q. W.; Li, J.; Wen, Z. Y.; Li, A. R.; Zhang, K. X.; Zhang, Z. Z.; Shi, J. J. et al. Herpesvirus-mimicking DNAzyme-loaded nanoparticles as a mitochondrial DNA stress inducer to activate innate immunity for tumor therapy. Adv. Mater. 2022, 34, 2204585.

[113]

Zheng, C. X.; Song, Q. L.; Zhao, H. J.; Kong, Y. Y.; Sun, L. L.; Liu, X. X.; Feng, Q. H.; Wang, L. A nanoplatform to boost multi-phases of cancer-immunity-cycle for enhancing immunotherapy. J. Control. Release 2021, 339, 403–415.

[114]

Zhao, Z.; Ma, Z. X.; Wang, B.; Guan, Y. K.; Su, X. D.; Jiang, Z. F. Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2'3'-cGAMP. Cell Rep. 2020, 32, 108053.

[115]

Zhang, R.; Wang, C. G.; Guan, Y. K.; Wei, X. M.; Sha, M. Y.; Yi, M. R.; Jing, M.; Lv, M. Z.; Guo, W.; Xu, J. et al. Manganese salts function as potent adjuvants. Cell. Mol. Immunol. 2021, 18, 1222–1234.

[116]

Zhu, C. D.; Ma, Q.; Gong, L. D.; Di, S. M.; Gong, J. J.; Wang, Y. Y.; Xiao, S.; Zhang, L.; Zhang, Q.; Fu, J. J. et al. Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer. Acta Biomater. 2022, 141, 429–439.

[117]

He, Q. B.; Zheng, R. X.; Ma, J. C.; Zhao, L. Y.; Shi, Y. F.; Qiu, J. F. Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy. Biomater. Res. 2023, 27, 29.

[118]

Tang, S. P.; Zhou, L.; He, H. Y.; Cui, L. W.; Ren, Z. C.; Tai, Y. H.; Xie, Z. Y.; Cao, Y.; Meng, D. W.; Liu, Q. L. et al. MnO2-melittin nanoparticles serve as an effective anti-tumor immunotherapy by enhancing systemic immune response. Biomaterials 2022, 288, 121706.

[119]

Sun, Z. L.; Wang, Z. Y.; Wang, T.; Wang, J. J.; Zhang, H. T.; Li, Z. Y.; Wang, S. R.; Sheng, F. G.; Yu, J.; Hou, Y. L. Biodegradable MnO-based nanoparticles with engineering surface for tumor therapy: Simultaneous fenton-like ion delivery and immune activation. ACS Nano 2022, 16, 11862–11875.

[120]

Li, Z.; Chu, Z. Y.; Yang, J.; Qian, H. S.; Xu, J. M.; Chen, B. J.; Tian, T.; Chen, H.; Xu, Y. S.; Wang, F. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy. ACS Nano 2022, 16, 15471–15483.

[121]

Cen, D.; Ge, Q. W.; Xie, C. K.; Zheng, Q.; Guo, J. S.; Zhang, Y. Q.; Wang, Y. F.; Li, X.; Gu, Z.; Cai, X. J. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy. Adv. Mater. 2021, 33, 2104037.

[122]

Liu, X. Y.; Kifle, M. T.; Xie, H. X.; Xu, L. X.; Luo, M. L.; Li, Y. Y.; Huang, Z. R.; Gong, Y.; Wu, Y. Z.; Xie, C. H. Biomineralized manganese oxide nanoparticles synergistically relieve tumor hypoxia and activate immune response with radiotherapy in non-small cell lung cancer. Nanomaterials 2022, 12, 3138.

[123]

Marill, J.; Mohamed Anesary, N.; Paris, S. DNA damage enhancement by radiotherapy-activated hafnium oxide nanoparticles improves cGAS-STING pathway activation in human colorectal cancer cells. Radiother. Oncol. 2019, 141, 262–266.

[124]

Yu, B. Y.; Lu, X. Y.; Feng, X. L.; Zhao, T.; Li, J. X.; Lu, Y. D.; Ye, F.; Liu, X. X.; Zheng, X. G.; Shen, Z. Y. et al. Gadolinium oxide nanoparticles reinforce the fractionated radiotherapy-induced immune response in tri-negative breast cancer via cGAS-STING pathway. Int. J. Nanomed. 2023, 18, 7713–7728.

[125]

Xiang, D. Q.; Han, X. L.; Li, J. X.; Zhang, J. B.; Xiao, H. H.; Li, T.; Zhao, X. L.; Xiong, H. J.; Xu, M.; Bi, W. Z. Combination of IDO inhibitors and platinum(IV) prodrugs reverses low immune responses to enhance cancer chemotherapy and immunotherapy for osteosarcoma. Mater. Today Bio 2023, 20, 100675.

[126]

Cao, L.; Tian, H. X.; Fang, M.; Xu, Z.; Tang, D. S.; Chen, J.; Yin, J. Y.; Xiao, H. H.; Shang, K.; Han, H. B. et al. Activating cGAS-STING pathway with ROS-responsive nanoparticles delivering a hybrid prodrug for enhanced chemo-immunotherapy. Biomaterials 2022, 290, 121856.

[127]

Hou, L.; Tian, C. Y.; Yan, Y. S.; Zhang, L. W.; Zhang, H. J.; Zhang, Z. Z. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 2020, 14, 3927–3940.

[128]

Xiao, Y.; Guo, G. H.; Wang, H. M.; Peng, B.; Lin, Y. L.; Qu, G. W.; Li, B.; Jiang, Z. J.; Zhang, F.; Wu, J. M. et al. Curcumin/L-OHP co-loaded HAP for cGAS-STING pathway activation to enhance the natural immune response in colorectal cancer. Bioeng. Transl. Med. 2024, 9, e10610.

[129]

Xia, J. Y.; Wang, L. Y.; Shen, T. L.; Li, P.; Zhu, P. Y.; Xie, S. N.; Chen, Z. Y.; Zhou, F.; Zhang, J. F.; Ling, J. et al. Integrated manganese (III)-doped nanosystem for optimizing photothermal ablation: Amplifying hyperthermia-induced STING pathway and enhancing antitumor immunity. Acta Biomater. 2023, 155, 601–617.

[130]

Zheng, Y.; Chen, J.; Song, X. R.; Chang, M. Q.; Feng, W.; Huang, H.; Jia, C. X.; Ding, L.; Chen, Y.; Wu, R. Manganese-enriched photonic/catalytic nanomedicine augments synergistic anti-TNBC photothermal/nanocatalytic/immuno-therapy via activating cGAS-STING pathway. Biomaterials 2023, 293, 121988.

[131]

Zhao, X.; Cheng, H.; Wang, Q. W.; Nie, W. M.; Yang, Y.; Yang, X. Y.; Zhang, K. X.; Shi, J. J.; Liu, J. J. Regulating photosensitizer metabolism with DNAzyme-loaded nanoparticles for amplified mitochondria-targeting photodynamic immunotherapy. ACS Nano 2023, 17, 13746–13759.

[132]

Li, Q. Z.; Yang, M. Y.; Sun, X.; Wang, Q. X.; Yu, B. B.; Gong, A. H.; Zhang, M. M.; Du, F. Y. NIR responsive nanoenzymes via photothermal ablation and hypoxia reversal to potentiate the STING-dependent innate antitumor immunity. Mater. Today Bio 2023, 19, 100566.

[133]

Wu, H.; Du, X. Y.; Xu, J. K.; Kong, X. R.; Li, Y. Y.; Liu, D. Z.; Yang, X. Y.; Ye, L.; Ji, J. B.; Xi, Y. W. et al. Multifunctional biomimetic nanoplatform based on photodynamic therapy and DNA repair intervention for the synergistic treatment of breast cancer. Acta Biomater. 2023, 157, 551–565.

[134]

Gu, J. Y.; Liu, X. P.; Ji, Z. F.; Shen, M. L.; Zhu, M. Q.; Ren, Y. Y.; Guo, L.; Yang, K.; Liu, T.; Yi, X. Tumor vascular destruction and cGAS-STING activation induced by single drug-loaded nano-micelles for multiple synergistic therapies of cancer. Small 2023, 19, 2303517.

[135]

Ge, T.; Ge, W. S.; Zhang, L. D.; Yu, G. H.; Li, Y.; Sun, L. S.; Dong, F.; Yao, Z.; Shi, L.; Wang, Y. G. Photodynamic immunotherapy using ADU-S100-modified nanoparticles to treat triple-negative breast cancer. Nanomedicine 2023, 18, 755–767.

[136]

Li, J. X.; Ren, H.; Qiu, Q.; Yang, X. Y.; Zhang, J. Y.; Zhang, C.; Sun, B. Y.; Lovell, J. F.; Zhang, Y. M. Manganese coordination micelles that activate stimulator of interferon genes and capture in situ tumor antigens for cancer metalloimmunotherapy. ACS Nano 2022, 16, 16909–16923.

[137]

Feng, X.; Xiong, X. L.; Ma, S. L. Docetaxel-loaded novel nano-platform for synergistic therapy of non-small cell lung cancer. Front. Pharmacol. 2022, 13, 832725.

[138]

Zhu, X. H.; Han, W.; Liu, Y. F.; Wang, H. H.; Lin, D. Y.; Fu, Z. C.; He, Y.; Yin, X. F.; Lu, C. H.; Yang, H. H. Rational design of a prodrug to inhibit self-inflammation for cancer treatment. Nanoscale 2021, 13, 5817–5825.

[139]

Cui, M. H.; Tang, D. S.; Wang, B.; Zhang, H. C.; Liang, G. H.; Xiao, H. H. Bioorthogonal guided activation of cGAS-STING by AIE photosensitizer nanoparticles for targeted tumor therapy and imaging. Adv. Mater. 2023, 35, 2305668.

[140]

Zhong, H. H.; Chen, G. J.; Li, T.; Huang, J. S.; Lin, M. Z.; Li, B.; Xiao, Z. C.; Shuai, X. T. Nanodrug augmenting antitumor immunity for enhanced TNBC therapy via pyroptosis and cGAS-STING activation. Nano Lett. 2023, 23, 5083–5091.

[141]

Yang, J. Q.; Guo, W.; Huang, R.; Bian, J. J.; Zhang, S. Q.; Wei, T.; He, C. S.; Hu, Z. Y.; Li, J.; Zhou, C. Y. et al. Self-assembled albumin nanoparticles induce pyroptosis for photodynamic/photothermal/immuno synergistic therapies in triple-negative breast cancer. Front. Immunol. 2023, 14, 1173487.

[142]

Bao, Y. H.; Ge, Y. N.; Wu, M. J.; Mao, Z. W.; Ye, J.; Tong, W. J. Record-high ultrasound-sensitive NO nanogenerators for cascade tumor pyroptosis and immunotherapy. Adv. Sci. 2023, 10, 2302278.

[143]

Wang, H.; Guan, Y.; Li, C.; Chen, J.; Yue, S. Y.; Qian, J. Y.; Dai, B. S.; Jiang, C. Q.; Wen, C. H.; Wen, L. P. et al. PEGylated manganese-zinc ferrite nanocrystals combined with intratumoral implantation of micromagnets enabled synergetic prostate cancer therapy via ferroptotic and immunogenic cell death. Small 2023, 19, 2207077.

[144]

Ablasser, A.; Chen, Z. J. cGAS in action: Expanding roles in immunity and inflammation. Science 2019, 363, eaat8657

[145]

Zhou, S. H.; Zhang, R. Y.; You, Z. W.; Zou, Y. K.; Wen, Y.; Wang, J.; Ding, D.; Bian, M. M.; Zhang, Z. M.; Yuan, H. et al. pH-sensitive and biodegradable Mn3(PO4)2·3H2O nanoparticles as an adjuvant of protein-based bivalent COVID-19 vaccine to induce potent and broad-spectrum immunity. ACS Appl. Mater. Interfaces 2023, 15, 8914–8926.

[146]

Fan, N.; Chen, K. P.; Zhu, R.; Zhang, Z. W.; Huang, H.; Qin, S. G.; Zheng, Q.; He, Z. S.; He, X.; Xiao, W. et al. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Sci. Adv. 2022, 8, eabq3500.

[147]

Zhang, N. R.; Ji, Q. T.; Liu, Z. Z.; Tang, K. M.; Xie, Y. B.; Li, K. C.; Zhou, J.; Li, S. S.; Shang, H. T.; Shi, Z. C. et al. Effect of different adjuvants on immune responses elicited by protein-based subunit vaccines against SARS-CoV-2 and its delta variant. Viruses 2022, 14, 501.

[148]

Zhang, Y. B.; Yan, J. Y.; Hou, X. C.; Wang, C.; Kang, D. D.; Xue, Y. E.; Du, S.; Deng, B. B.; Mccomb, D. W.; Liu, S. L. et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2. Nano Lett. 2023, 23, 2593–2600.

[149]

Li, M. C.; Yang, L.; Wang, C. C.; Cui, M. T.; Wen, Z. Y.; Liao, Z. H.; Han, Z. R.; Zhao, Y. G.; Lang, B.; Chen, H. Z. et al. Rapid induction of long-lasting systemic and mucosal immunity via thermostable microneedle-mediated chitosan oligosaccharide-encapsulated DNA nanoparticles. ACS Nano 2023, 17, 24200–24217.

[150]

Wang, J.; Li, P. Y.; Yu, Y.; Fu, Y. H.; Jiang, H. Y.; Lu, M.; Sun, Z. P.; Jiang, S. B.; Lu, L.; Wu, M. X. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 2020, 367, eaau0810.

[151]

Shin, J. H.; Lee, J. H.; Jeong, S. D.; Noh, J. Y.; Lee, H. W.; Song, C. S.; Kim, Y. C. C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin. Drug Deliv. Transl. Res. 2020, 10, 815–825.

[152]

Tsai, H. H.; Huang, P. H.; Lin, L. C.; Yao, B. Y.; Liao, W. T.; Pai, C. H.; Liu, Y. H.; Chen, H. W.; Hu, C. M. J. Lymph node follicle-targeting STING agonist nanoshells enable single-shot M2e vaccination for broad and durable influenza protection. Adv. Sci. 2023, 10, 2206521.

[153]

Rudicell, R. S.; Garinot, M.; Kanekiyo, M.; Kamp, H. D.; Swanson, K.; Chou, T. H.; Dai, S. J.; Bedel, O.; Simard, D.; Gillespie, R. A. et al. Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine 2019, 37, 6208–6220.

[154]

Lin, L. C. W.; Huang, C. Y.; Yao, B. Y.; Lin, J. C.; Agrawal, A.; Algaissi, A.; Peng, B. H.; Liu, Y. H.; Huang, P. H.; Juang, R. H. et al. Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against middle east respiratory syndrome coronavirus. Adv. Funct. Mater. 2019, 29, 1807616.

[155]

Lu, T.; Hu, F. M.; Yue, H.; Yang, T. Y.; Ma, G. H. The incorporation of cationic property and immunopotentiator in poly (lactic acid) microparticles promoted the immune response against chronic hepatitis B. J. Control. Release 2020, 321, 576–588.

[156]

Aroh, C.; Wang, Z. H.; Dobbs, N.; Luo, M.; Chen, Z. J.; Gao, J. M.; Yan, N. Innate immune activation by cGMP-AMP nanoparticles leads to potent and long-acting antiretroviral response against HIV-1. J. Immunol. 2017, 199, 3840–3848.

[157]

Gao, X. T.; Yin, Y. L.; Liu, S.; Dong, K. H.; Wang, J.; Guo, C. L. Fucoidan-proanthocyanidins nanoparticles protect against cisplatin-induced acute kidney injury by activating mitophagy and inhibiting mtDNA-cGAS/STING signaling pathway. Int. J. Biol. Macromol. 2023, 245, 125541.

[158]

Hu, X. L.; Zhang, H. J.; Zhang, Q. X.; Yao, X.; Ni, W. F.; Zhou, K. L. Emerging role of STING signalling in CNS injury: Inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J. Neuroinflammation 2022, 19, 242.

[159]

Shi, J. J.; Yang, Y.; Yin, N.; Liu, C. H.; Zhao, Y. Z.; Cheng, H.; Zhou, T. H.; Zhang, Z. Z.; Zhang, K. X. Engineering CXCL12 biomimetic decoy-integrated versatile immunosuppressive nanoparticle for ischemic stroke therapy with management of overactivated brain immune microenvironment. Small Methods 2022, 6, 2101158.

[160]

Zhu, Z. X.; Lu, H. P.; Jin, L. L.; Gao, Y.; Qian, Z. F.; Lu, P.; Tong, W. J.; Lo, P. K.; Mao, Z. W.; Shi, H. F. C-176 loaded Ce DNase nanoparticles synergistically inhibit the cGAS-STING pathway for ischemic stroke treatment. Bioact. Mater. 2023, 29, 230–240.

[161]

Hanna, D. M. F.; Youshia, J.; Fahmy, S. F.; George, M. Y. Nose to brain delivery of naringin-loaded chitosan nanoparticles for potential use in oxaliplatin-induced chemobrain in rats: Impact on oxidative stress, cGAS/STING and HMGB1/RAGE/TLR2/MYD88 inflammatory axes. Expert Opin. Drug Deliv. 2023, 20, 1859–1873.

[162]

Wei, F. L.; Wang, T. F.; Wang, C. L.; Zhang, Z. P.; Zhao, J. W.; Heng, W.; Tang, Z.; Du, M. R.; Yan, X. D.; Li, X. X. et al. Cytoplasmic escape of mitochondrial DNA mediated by Mfn2 downregulation promotes microglial activation via cGas-sting axis in spinal cord injury. Adv. Sci. 2024, 11, 2305442.

[163]

Garland, K. M.; Sheehy, T. L.; Wilson, J. T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 2022, 122, 5977–6039.

[164]

Meric-Bernstam, F.; Sweis, R. F.; Hodi, F. S.; Messersmith, W. A.; Andtbacka, R. H. I.; Ingham, M.; Lewis, N.; Chen, X. H.; Pelletier, M.; Chen, X. Y. et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin. Cancer Res. 2022, 28, 677–688.

[165]

Zandberg, D. P.; Ferris, R.; Laux, D.; Mehra, R.; Nabell, L.; Kaczmar, J.; Gibson, M. K.; Kim, Y. J.; Neupane, P.; Bauman, J. et al. 71P A phase II study of ADU-S100 in combination with pembrolizumab in adult patients with PD-L1+ recurrent or metastatic HNSCC: Preliminary safety, efficacy and PK/PD results. Ann. Oncol. 2020, 31, S1446–S1447

[166]

Harrington, K. J.; Brody, J.; Ingham, M.; Strauss, J.; Cemerski, S.; Wang, M.; Tse, A.; Khilnani, A.; Marabelle, A.; Golan, T. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol. 2018, 29, viii712.

[167]

Huang, K. C.; Endo, A.; McGrath, S.; Chandra, D.; Wu, J. Y.; Kim, D. S.; Albu, D.; Ingersoll, C.; Tendyke, K.; Loiacono, K. et al. Abstract 3269: Discovery and characterization of E7766, a novel macrocycle-bridged STING agonist with pan-genotypic and potent antitumor activity through intravesical and intratumoral administration. Cancer Res. 2019, 79, 3269–3269.

[168]

Huang, K. C.; Zhang, C.; Yu, K.; Kim, D. S.; Dixit, V.; Hukkanen, R.; Choi, H. W.; Hutz, J.; Fang, F.; Bao, X. F. Abstract 592: Demonstration of E7766, a novel STING agonist, as a potent immunotherapy in BCG-insensitive non-muscle invasive bladder cancer models via intravesical administration. Cancer Res. 2020, 80, 592.

[169]

Chin, E. N.; Yu, C. G.; Vartabedian, V. F.; Jia, Y.; Kumar, M.; Gamo, A. M.; Vernier, W.; Ali, S. H.; Kissai, M.; Lazar, D. C. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 2020, 369, 993–999.

[170]

Wu, Y. T.; Fang, Y.; Wei, Q.; Shi, H. P.; Tan, H. L.; Deng, Y. F.; Zeng, Z. Q.; Qiu, J.; Chen, C.; Sun, L. J. et al. Tumor-targeted delivery of a STING agonist improves cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2214278119.

[171]

Wang, Y.; Luo, J. W.; Alu, A.; Han, X. J.; Wei, Y. Q.; Wei, X. W. cGAS-STING pathway in cancer biotherapy. Mol. Cancer 2020, 19, 136

[172]

Shang, G. J.; Zhang, C. G.; Chen, Z. J.; Bai, X. C.; Zhang, X. W. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 2019, 567, 389–393.

[173]

Song, Z. L.; Wang, X. Y.; Zhang, Y.; Gu, W. T.; Shen, A. C.; Ding, C. Y.; Li, H.; Xiao, R. X.; Geng, M. Y.; Xie, Z. Q. Structure-activity relationship study of amidobenzimidazole analogues leading to potent and systemically administrable stimulator of interferon gene (STING) agonists. J. Med. Chem. 2021, 64, 1649–1669.

[174]

Jeon, M. J.; Lee, H.; Lee, J.; Baek, S. Y.; Lee, D.; Jo, S.; Lee, J. Y.; Kang, M.; Jung, H. R.; Han, S. B. et al. Development of potent immune modulators targeting stimulator of interferon genes receptor. J. Med. Chem. 2022, 65, 5407–5432.

[175]

Xi, Q. M.; Wang, M. J.; Jia, W. Q.; Yang, M. J.; Hu, J. P.; Jin, J.; Chen, X. G.; Yin, D. L.; Wang, X. J. Design, synthesis, and biological evaluation of amidobenzimidazole derivatives as stimulator of interferon genes (STING) receptor agonists. J. Med. Chem. 2020, 63, 260–282.

[176]

Pan, B. S.; Perera, S. A.; Piesvaux, J. A.; Presland, J. P.; Schroeder, G. K.; Cumming, J. N.; Trotter, B. W.; Altman, M. D.; Buevich, A. V.; Cash, B. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 2020, 369, eaba6098.

[177]

Yi, M.; Niu, M. K.; Wu, Y. Z.; Ge, H.; Jiao, D. C.; Zhu, S. L.; Zhang, J.; Yan, Y. X.; Zhou, P. F.; Chu, Q. et al. Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: A novel immune cocktail therapy for non-inflamed tumors. J. Hematol. Oncol. 2022, 15, 142.

[178]

Wang, J.; Falchook, G.; Nabhan, S.; Kulkarni, M.; Sandy, P.; Dosunmu, O.; Gardner, H.; Bendell, J.; Johnson, M. 495 Trial of SNX281, a systemically delivered small molecule STING agonist, in solid tumors and lymphomas. J. Immunother. Cancer 2021, 9, A527.

[179]

Huang, R. L.; Ning, Q.; Zhao, J. H.; Zhao, X. H.; Zeng, L. T.; Yi, Y.; Tang, S. S. Targeting STING for cancer immunotherapy: From mechanisms to translation. Int. Immunopharmacol. 2022, 113, 109304.

[180]

Seok, J.; Kim, M.; Kang, H.; Cho, Y. Y.; Lee, H. S.; Lee, J. Y. Beyond DNA sensing: Expanding the role of cGAS/STING in immunity and diseases. Arch. Pharm. Res. 2023, 46, 500–534.

[181]

Zhang, Z. L.; Zhou, H. F.; Ouyang, X. H.; Dong, Y. L.; Sarapultsev, A.; Luo, S. S.; Hu, D. S. Multifaceted functions of STING in human health and disease: From molecular mechanism to targeted strategy. Signal Transduct. Target. Ther. 2022, 7, 394.

[182]

Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

[183]

Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.

[184]

Lv, M. Z.; Chen, M. X.; Zhang, R.; Zhang, W.; Wang, C. G.; Zhang, Y.; Wei, X. M.; Guan, Y. K.; Liu, J. J.; Feng, K. C. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979.

[185]

Patil, V.; Hernandez-Franco, J. F.; Yadagiri, G.; Bugybayeva, D.; Dolatyabi, S.; Feliciano-Ruiz, N.; Schrock, J.; Hanson, J.; Ngunjiri, J.; Hogenesch, H. et al. A split influenza vaccine formulated with a combination adjuvant composed of alpha-D-glucan nanoparticles and a STING agonist elicits cross-protective immunity in pigs. J. Nanobiotechnol. 2022, 20, 477.

[186]

Qiao, N.; Wang, H. R.; Xu, Y. H.; Chang, Y.; Xie, M. X.; Bai, S. T.; He, C. T.; Qin, M.; Zhong, X. F.; Jiang, M. et al. A MnAl double adjuvant nanovaccine to induce strong humoral and cellular immune responses. J. Control. Release 2023, 358, 190–203.

[187]

Hanson, M. C.; Crespo, M. P.; Abraham, W.; Moynihan, K. D.; Szeto, G. L.; Chen, S. H.; Melo, M. B.; Mueller, S.; Irvine, D. J. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J. Clin. Invest. 2015, 125, 2532–2546.

Nano Research
Pages 7315-7336
Cite this article:
Zhou L, Huang Y, Wu Y, et al. Nanoparticle targeting cGAS-STING signaling in disease therapy. Nano Research, 2024, 17(8): 7315-7336. https://doi.org/10.1007/s12274-024-6714-x
Topics:

697

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 February 2024
Revised: 20 April 2024
Accepted: 22 April 2024
Published: 15 June 2024
© Tsinghua University Press 2024
Return