Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Enhanced homing of mesenchymal stem cells for in situ niche remodeling and bone regeneration

Yin Yuan1,2,§Lijun Chen1,3,§Jing Yang1Sining Zhou1Yangxin Fang1Qi Zhang1Ning Zhang1Yifei Li1Li Yuan4Fan Jia5,6()Shuo Ni7,8()Charlie Xiang1,3()
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
Innovative Precision Medicine (IPM) Group, Hangzhou 311215, China
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston MA 02115, USA
Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200233, China

§ Yin Yuan and Lijun Chen contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
In this work, we isolated a kind of mesenchymal stem cells from women’s menstrual blood (MenSCs) and established a bone marrow-targeted cell delivery system (ZAM) via microfluidics. Systematic infusion of ZAMs enhanced the bone marrow homing efficiency of MenSCs and restored bone mass effectively by remodeling mouse bone marrow niche.

Abstract

Mesenchymal stem cells (MSCs) transplantation is a promising strategy for osteoporosis treatment. However, limited sources and poor tissue-homing efficiency limit their clinical capabilities. In this study, we isolated a kind of MSCs from women’s menstrual blood (MenSCs) noninvasively and established a novel MSCs bone marrow-targeted delivery system by utilizing water-in-oil-in-water droplet microfluidics. MenSCs were encapsulated within β-cyclodextrin-functionalized alginate microcapsules loaded with zoledronates, which has a high affinity for bone. With this delivery system, MenSCs could be preferentially delivered to the bone marrow tissues via intravenous infusion, and restored bone mass by remodeling the bone marrow niche in situ in ovariectomized mouse models. Moreover, scRNA-seq analysis demonstrated that those MenSCs homed to the bone marrow recruited CD4+FOXP3+ natural regulatory T (nTreg) cells by secreting CCL28. The recruited nTreg promoted CD8+ T cells to secret Wnt family member 10B (WNT10B), activating the Wnt signaling in osteoblasts and thus promoting bone formation in situ in the bone marrow. This study reveals a promising application of MenSCs in postmenopausal osteoporosis treatment and highlights the clinical value of MenSCs by encouraging women to reserve autologous MenSCs before menopause to prevent and alleviate postmenopausal osteoporosis.

Electronic Supplementary Material

Video
6715_ESM2.avi
6715_ESM3.avi
Download File(s)
6715_ESM1.pdf (1.8 MB)

References

[1]

Reid, I. R. Extensive expertise in endocrinology: Osteoporosis management. Eur. J. Endocrinol. 2022, 187, R65–R80.

[2]

Jiang, Y. H.; Zhang, P.; Zhang, X.; Lv, L. W.; Zhou, Y. S. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif. 2021, 54, e12956.

[3]

Aghebati-Maleki, L.; Dolati, S.; Zandi, R.; Fotouhi, A.; Ahmadi, M.; Aghebati, A.; Nouri, M.; Shakouri, S.K.; Yousefi, M. Prospect of mesenchymal stem cells in therapy of osteoporosis: A review. J. Cell. Physiol. 2019, 234, 8570–8578.

[4]

Maric, D. M.; Velikic, G.; Maric, D. L.; Supic, G.; Vojvodic, D.; Petric, V.; Abazovic, D. Stem cell homing in intrathecal applications and inspirations for improvement paths. Int. J. Mol. Sci. 2022, 23, 4290.

[5]

Kean, T. J.; Lin, P.; Caplan, A. I.; Dennis, J. E. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013, 2013, 732742.

[6]

Andreas, K.; Sittinger, M.; Ringe, J. Toward in situ tissue engineering: Chemokine-guided stem cell recruitment. Trends Biotechnol. 2014, 32, 483–492.

[7]

Chen, L. J.; Qu, J. J.; Cheng, T. L.; Chen, X.; Xiang, C. Menstrual blood-derived stem cells: Toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Res. Ther. 2019, 10, 406.

[8]

Guo, J. W.; Wang, F. X.; Hu, Y.; Luo, Y.; Wei, Y.; Xu, K.; Zhang, H.; Liu, H.; Bo, L. M.; Lv, S. L. et al. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep. Med. 2023, 4, 100881.

[9]

Liu, T. F.; Wang, Y.; Zhong, W.; Li, B. Y.; Mequanint, K.; Luo, G. X.; Xing, M. Biomedical applications of layer-by-layer self-assembly for cell encapsulation: Current status and future perspectives. Adv Healthc Mater 2019, 8, 1800939.

[10]

Yang, L.; Liu, Y. X.; Sun, L. Y.; Zhao, C.; Chen, G. P.; Zhao, Y. J. Biomass microcapsules with stem cell encapsulation for bone repair. Nano-Micro Lett. 2022, 14, 4.

[11]

Dhamecha, D.; Movsas, R.; Sano, U.; Menon, J. U. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int. J. Pharm. 2019, 569, 118627.

[12]

Lu, S.; Na, K.; Wei, J. N.; Zhang, L.; Guo, X. H. Alginate oligosaccharides: The structure-function relationships and the directional preparation for application. Carbohydr. Polym. 2022, 284, 119225.

[13]

Sanchez-Ballester, N. M.; Bataille, B.; Soulairol, I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr. Polym. 2021, 270, 118399.

[14]

Chu, S.; Maples, M. M.; Bryant, S. J. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations. Acta Biomater. 2020, 109, 37–50.

[15]

Ow, V.; Chang, J. J.; Chooi, W. H.; Boo, Y. J.; Tan, R. P. T.; Wong, J. H. M.; Parikh, B. H.; Su, X. Y.; Ng, S. Y.; Loh, X. J. et al. Orthogonally crosslinked alginate conjugate thermogels with potential for cell encapsulation. Carbohydr. Polym. 2023, 302, 120308.

[16]

Cho, I. S.; Gupta, P.; Mostafazadeh, N.; Wong, S. W.; Saichellappa, S.; Lenzini, S.; Peng, Z. L.; Shin, J. W. Deterministic single cell encapsulation in asymmetric microenvironments to direct cell polarity. Adv. Sci. (Weinh.) 2023, 10, 2206014.

[17]

Amirifar, L.; Besanjideh, M.; Nasiri, R.; Shamloo, A.; Nasrollahi, F.; De Barros, N. R.; Davoodi, E.; Erdem, A.; Mahmoodi, M.; Hosseini, V. et al. Droplet-based microfluidics in biomedical applications. Biofabrication 2022, 14, 022001.

[18]

Sun, W. T.; Ge, K.; Jin, Y.; Han, Y.; Zhang, H. S.; Zhou, G. Q.; Yang, X. J.; Liu, D. D.; Liu, H. F.; Liang, X. J. et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 2019, 13, 7556–7567.

[19]

Macías, I.; Alcorta-Sevillano, N.; Rodríguez, C. I.; Infante, A. Osteoporosis and the potential of cell-based therapeutic strategies. Int. J. Mol. Sci. 2020, 21, 1653.

[20]

Galán-Díez, M.; Kousteni, S. A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 2018, 32, 324–326.

[21]

Shiozawa, Y.; Havens, A. M.; Pienta, K. J.; Taichman, R. S. The bone marrow niche: Habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 2008, 22, 941–950.

[22]

Xiao, Y. B.; McGuinness, C. S.; Doherty-Boyd, W. S.; Salmeron-Sanchez, M.; Donnelly, H.; Dalby, M. J. Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022, 286, 121568.

[23]

Jia, F.; Deng, Y. Y.; Fang, Y.; Jin, Q.; Ji, J. Glutathione responsive β-cyclodextrin conjugated S-nitrothiols as a carrier for intracellular delivery of nitric oxide. Bioconjugate Chem. 2019, 30, 583–591.

[24]

Basu, T.; Bhutani, U.; Majumdar, S. Cross-linker-free sodium alginate and gelatin hydrogels: A multiscale biomaterial design framework. J. Mater. Chem. B 2022, 10, 3614–3623.

[25]

Ye, J. W.; Yu, B.; Hu, H. T.; Zhou, D. F.; Jin, Q.; Ji, J.; Tang, Z. Verteporfin-loaded supramolecular micelles for enhanced cisplatin-based chemotherapy via autophagy inhibition. J. Mater. Chem. B 2022, 10, 2670–2679.

[26]

Zhao, Y. M.; Deng, Y. Y.; Tang, Z.; Jin, Q.; Ji, J. Zwitterionic reduction-activated supramolecular prodrug nanocarriers for photodynamic ablation of cancer cells. Langmuir 2019, 35, 1919–1926.

[27]

Baron, R.; Neff, L.; Louvard, D.; Courtoy, P. J. Cell-mediated extracellular acidification and bone resorption: Evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J. Cell Biol. 1985, 101, 2210–2222.

[28]

Yeh, S. C. A.; Hou, J.; Wu, J. W.; Yu, S.; Zhang, Y.; Belfield, K. D.; Camargo, F. D.; Lin, C. P. Quantification of bone marrow interstitial pH and calcium concentration by intravital ratiometric imaging. Nat. Commun. 2022, 13, 393.

[29]

Fischer, V.; Haffner-Luntzer, M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin. Cell Dev. Biol. 2022, 123, 14–21.

[30]

Ensrud, K. E. Bisphosphonates for postmenopausal osteoporosis. JAMA 2021, 325, 96.

[31]

Oryan, A.; Sahvieh, S. Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life Sci. 2021, 264, 118681.

[32]

Chen, X.; Wu, Y.; Wang, Y. L.; Chen, L. J.; Zheng, W. D.; Zhou, S. N.; Xu, H. K.; Li, Y. F.; Yuan, L.; Xiang, C. Human menstrual blood-derived stem cells mitigate bleomycin-induced pulmonary fibrosis through anti-apoptosis and anti-inflammatory effects. Stem Cell Res. Ther. 2020, 11, 477.

[33]

Zhou, S. N.; Liu, Y. M.; Zhang, Q.; Xu, H. K.; Fang, Y. X.; Chen, X.; Fu, J. M.; Yuan, Y.; Li, Y. F.; Yuan, L. et al. Human menstrual blood-derived stem cells reverse sorafenib resistance in hepatocellular carcinoma cells through the hyperactivation of mitophagy. Stem Cell Res. Ther. 2023, 14, 58.

[34]

Jeffery, E. C.; Mann, T. L. A.; Pool, J. A.; Zhao, Z. Y.; Morrison, S. J. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 2022, 29, 1547–1561.e6.

[35]

Comazzetto, S.; Shen, B.; Morrison, S. J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 2021, 56, 1848–1860.

[36]

Ashman, J.; Mutsonziwa, N.; Romano, M.; Kordasti, S.; Lombardi, G.; Shangaris, P. Regulatory T cell niche in the bone marrow, a new player in Haematopoietic stem cell transplantation. Blood Rev. 2023, 59, 101030.

[37]

Allan, S. E.; Broady, R.; Gregori, S.; Himmel, M. E.; Locke, N.; Roncarolo, M. G.; Bacchetta, R.; Levings, M. K. CD4+ T-regulatory cells: Toward therapy for human diseases. Immunol. Rev. 2008, 223, 391–421

[38]

Kanamori, M.; Nakatsukasa, H.; Okada, M.; Lu, Q. J.; Yoshimura, A. Induced regulatory T Cells: Their development, stability, and applications. Trends Immunol. 2016, 37, 803–811.

[39]

Facciabene, A.; Peng, X. H.; Hagemann, I. S.; Balint, K.; Barchetti, A.; Wang, L. P.; Gimotty, P. A.; Gilks, C. B.; Lal, P.; Zhang, L. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011, 475, 226–230.

[40]

Wang, W.; Soto, H.; Oldham, E. R.; Buchanan, M. E.; Homey, B.; Catron, D.; Jenkins, N.; Copeland, N. G.; Gilbert, D. J.; Nguyen, N. et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J. Biol. Chem. 2000, 275, 22313–22323.

[41]

Lawson, L. Y.; Brodt, M. D.; Migotsky, N.; Chermside-Scabbo, C. J.; Palaniappan, R.; Silva, M. J. Osteoblast-specific wnt secretion is required for skeletal homeostasis and loading-induced bone formation in adult mice. J. Bone Miner. Res. 2022, 37, 108–120.

[42]

Shen, G. Y.; Ren, H.; Shang, Q.; Zhao, W. H.; Zhang, Z. D.; Yu, X.; Tang, K.; Tang, J. J.; Yang, Z. D.; Liang, D. et al. Foxf1 knockdown promotes BMSC osteogenesis in part by activating the Wnt/β-catenin signalling pathway and prevents ovariectomy-induced bone loss. EBioMedicine 2020, 52, 102626.

[43]

Perkins, R. S.; Singh, R.; Abell, A. N.; Krum, S. A.; Miranda-Carboni, G. A. The role of WNT10B in physiology and disease: A 10-year update. Front. Cell Dev. Biol. 2023, 11, 1120365.

[44]

Tyagi, A. M.; Yu, M. C.; Darby, T. M.; Vaccaro, C.; Li, J. Y.; Owens, J. A.; Hsu, E.; Adams, J.; Weitzmann, M. N.; Jones, R. M. et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 2018, 49, 1116–1131.e7.

[45]

Kobayashi, E.; Jin, A. S.; Hamana, H.; Shitaoka, K.; Tajiri, K.; Kusano, S.; Yokoyama, S.; Ozawa, T.; Obata, T.; Muraguchi, A. et al. Rapid cloning of antigen-specific T-cell receptors by leveraging the cis activation of T cells. Nat. Biomed. Eng. 2022, 6, 806–818.

[46]

Nieto, J. E.; Maher, O.; Stanley, S. D.; Knych, H. K.; Snyder, J. R. Pharmacokinetics, pharmacodynamics, and safety of zoledronic acid in horses. Am. J. Vet. Res. 2013, 74, 550–556.

[47]

Raccor, B. S.; Sun, J. X.; Lawrence, R. F.; Li, L.; Zhang, H.; Somerman, M. J.; Totah, R. A. Quantitation of zoledronic acid in murine bone by liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 935, 54–60.

[48]

Yuan, Y.; Yang, J.; Zhuge, A. X.; Li, L. J.; Ni, S. Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy. Cell Prolif. 2022, 55, e13194.

[49]

Ji, L.; Qian, W.; Gui, L. M.; Ji, Z. Z.; Yin, P.; Lin, G. N.; Wang, Y.; Ma, B.; Gao, W. Q. Blockade of β-catenin-induced CCL28 suppresses gastric cancer progression via inhibition of treg cell infiltration. Cancer Res. 2020, 80, 2004–2016.

[50]

Allickson, J.; Xiang, C. Human adult stem cells from menstrual blood and endometrial tissue. J. Zhejiang Univ. Sci. B 2012, 13, 419–420.

[51]

Xiang, B. Y.;Chen, L.;Wang, X. J.;Zhao, Y. J.;Wang, Y. L.; Xiang, C. Transplantation of Menstrual Blood-Derived Mesenchymal Stem Cells Promotes the Repair of LPS-Induced Acute Lung Injury. Int J Mol Sci 2017, 18, 689.

[52]

Wu, Y. C.;Chen, X.;Zhao, Y. J.;Wang, Y. L.;Li, Y. F.; Xiang, C. Genome-wide DNA methylation and hydroxymethylation analysis reveal human menstrual blood-derived stem cells inhibit hepatocellular carcinoma growth through oncogenic pathway suppression via regulating 5-hmC in enhancer elements. Stem Cell Res. Ther. 2019, 10, 151.

[53]

Wang, Z. W.; He, L.; Li, W. N.; Xu, C. Y.; Zhang, J. Y.; Wang, D. S.; Dou, K. F.; Zhuang, R.; Jin, B. Q.; Zhang, W. et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma J. ImmunoTher. Cancer 2021, 9, e002787.

[54]

Angelova, M.; Mlecnik, B.; Vasaturo, A.; Bindea, G.; Fredriksen, T.; Lafontaine, L.; Buttard, B.; Morgand, E.; Bruni, D.; Jouret-Mourin, A. et al. Evolution of metastases in space and time under immune selection. Cell 2018, 175, 751–765e.16.

Nano Research
Pages 7449-7460
Cite this article:
Yuan Y, Chen L, Yang J, et al. Enhanced homing of mesenchymal stem cells for in situ niche remodeling and bone regeneration. Nano Research, 2024, 17(8): 7449-7460. https://doi.org/10.1007/s12274-024-6715-1
Topics:
Metrics & Citations  
Article History
Copyright
Return