AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Piezoelectric film promotes skin wound healing with enhanced collagen deposition and vessels regeneration via upregulation of PI3K/AKT

Qi Xu1,,§Wufei Dai1,§Peizhe Li2,§Qinglin Li2Zhen Gao1Xiaoli Wu1Wei Liu1( )Wenbo Wang1( )
Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Research Institute of Plastic Surgery, Shandong Second Medical University, Weifang 261000, China
Present address: Department of Surgery, Air Force Medical Center, PLA, Beijing 100142, China

§ Qi Xu, Wufei Dai, and Peizhe Li contributed equally to this work.

Show Author Information

Graphical Abstract

A self-powered repetitive mechanical impact electrical stimulation (RMI-ES) system, based on BaTiO3/polydimethylsiloxane (PDMS) piezoelectric composite films, was used to promote skin wound healing. It enhanced fibroblast proliferation, reduced inflammation, and promoted collagen deposition and new blood vessel formation through the PI3K/AKT pathway.

Abstract

Skin wounds are common in accidental injuries, and the intricacies of wound repair are closely linked to endogenous electric fields. Electrical stimulation plays a pivotal role in the restorative processes of skin injuries, encompassing collagen deposition, angiogenesis, inflammation, and re-epithelialization. Employing electrical stimulation therapy replicates and enhances the effects of endogenous wound electric fields by applying an external electric field to the wound site, thereby promoting skin wound healing. In this study, we developed a self-powered repetitive mechanical impacts-electrical stimulation (RMI-ES) system utilizing a BaTiO3/polydimethylsiloxane (PDMS) piezoelectric composite film. Compared to conventional electrical stimulation devices, the fabricated piezoelectric composite film efficiently harvests energy from the pressure applied by the stimulation device and the tensile force occurring during natural rat activities. The results demonstrated that piezoelectric stimulation generated by the composite membrane expedited the cell cycle, promoting fibroblast proliferation. Additionally, piezoelectric stimulation induced favorable changes in fibroblast gene expression, including increased expression of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), collagen 1, collagen 3, vascular endothelial growth factor (VEGF), and alpha-smooth muscle actin (α-SMA), while reducing interleukin-6 (IL-6) expression. Transcriptome analysis revealed that piezoelectric stimulation may induce fibroblast migration, proliferation, and collagen expression by influencing PI3K/AKT serine/threonine kinase (AKT) pathways. Further confirmation through the addition of the PI3K inhibitor LY294002 validated that piezoelectric stimulation can regulate the repair process after skin injury through the pathway. Importantly, in vivo results demonstrated that the electric field at the wound site effectively promoted wound healing, reduced inflammation, and stimulated collagen deposition and neovascularization. This study emphasizes the role of the piezoelectric membrane as an effective, safe, and battery-free electrical stimulator crucial for skin wound healing.

References

[1]

Wang, W. J.; Sun, W. T.; Du, Y. F.; Zhao, W. B.; Liu, L. J.; Sun, Y.; Kong, D. J.; Xiang, H. F.; Wang, X. X.; Li, Z. et al. Triboelectric nanogenerators-based therapeutic electrical stimulation on skin: From fundamentals to advanced applications. ACS Nano 2023, 17, 9793–9825.

[2]

Suo, G. Q.; Yu, Y. H.; Zhang, Z. Y.; Wang, S. F.; Zhao, P.; Li, J. Y.; Wang, X. D. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341.

[3]

Bhang, S. H.; Jang, W. S.; Han, J.; Yoon, J. K.; La, W. G.; Lee, E.; Kim, Y. S.; Shin, J. Y.; Lee, T. J.; Baik, H. K. et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater. 2017, 27, 1603497.

[4]

Du, S.; Zhou, N. Y.; Gao, Y. J.; Xie, G.; Du, H. Y.; Jiang, H.; Zhang, L. B.; Tao, J.; Zhu, J. T. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525–2533.

[5]

Tai, G. P.; Tai, M.; Zhao, M. Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma 2018, 6, 20.

[6]

Liang, J. C.; Zeng, H. J.; Qiao, L.; Jiang, H.; Ye, Q.; Wang, Z. L.; Liu, B.; Fan, Z. J. 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing. ACS Appl. Mater. Interfaces 2022, 14, 30507–30522.

[7]

Augustine, R.; Dan, P.; Sosnik, A.; Kalarikkal, N.; Tran, N.; Vincent, B.; Thomas, S.; Menu, P.; Rouxel, D. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 2017, 10, 3358–3376.

[8]

Kim, T. H.; Jeon, W. Y.; Ji, Y.; Park, E. J.; Yoon, D. S.; Lee, N. H.; Park, S. M.; Mandakhbayar, N.; Lee, J. H.; Lee, H. H.; et al. Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. Biomaterials 2021, 275, 120948.

[9]

Wang, A. C.; Liu, Z.; Hu, M.; Wang, C. C.; Zhang, X. D.; Shi, B. J.; Fan, Y. B.; Cui, Y. G.; Li, Z.; Ren, K. L. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy 2018, 43, 63–71.

[10]

Li, L.; Gu, W.; Du, J.; Reid, B.; Deng, X. J.; Liu, Z. D.; Zong, Z. W.; Wang, H. Y.; Yao, B.; Yang, C. et al. Electric fields guide migration of epidermal stem cells and promote skin wound healing. Wound Repair Regen. 2012, 20, 840–851.

[11]

Zhao, M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin. Cell Dev. Biol. 2009, 20, 674–682.

[12]

Zhao, L.; Feng, Z. P.; Lyu, Y.; Yang, J. Y.; Lin, L. Z.; Bai, H. C.; Li, Y. J.; Feng, Y. Q.; Chen, Y. Electroactive injectable hydrogel based on oxidized sodium alginate and carboxymethyl chitosan for wound healing. Int. J. Biol. Macromol. 2023, 230, 123231.

[13]

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

[14]

Long, Y.; Wei, H.; Li, J.; Yao, G.; Yu, B.; Ni, D. L.; Gibson, A. L. F.; Lan, X. L.; Jiang, Y. D.; Cai, W. B. et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 2018, 12, 12533–12540.

[15]

Kai, H.; Yamauchi, T.; Ogawa, Y.; Tsubota, A.; Magome, T.; Miyake, T.; Yamasaki, K.; Nishizawa, M. Accelerated wound healing on skin by electrical stimulation with a bioelectric plaster. Adv. Healthc. Mater. 2017, 6, 1700465.

[16]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[17]

Yu, J. B.; Hou, X. J.; Cui, M.; Zhang, S. N.; He, J.; Geng, W. P.; Mu, J. L.; Chou, X. J. Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator. Nano Energy 2019, 64, 103923.

[18]

Shi, X. X.; Chen, Y. X.; Zhao, Y.; Ye, M. Z.; Zhang, S. D.; Gong, S. Q. Ultrasound-activable piezoelectric membranes for accelerating wound healing. Biomater. Sci. 2022, 10, 692–701.

[19]

Li, S. P.; Zhang, J. Q.; He, J.; Liu, W. P.; Wang, Y. H.; Huang, Z. J.; Pang, H.; Chen, Y. W. Functional PDMS elastomers: Bulk composites, surface engineering, and precision fabrication. Adv. Sci. (Weinh.) 2023, 10, 2304506.

[20]

Yu, Y. H.; Sun, H. Y.; Orbay, H.; Chen, F.; England, C. G.; Cai, W. B.; Wang, X. D. Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy 2016, 27, 275–281.

[21]

Wu, J.; Qin, N.; Bao, D. H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.

[22]

Yu, X.; Wang, S.; Zhang, X. D.; Qi, A. H.; Qiao, X. R.; Liu, Z. R.; Wu, M. Q.; Li, L. L.; Wang, Z. L. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy 2018, 46, 29–38.

[23]

Cao, L.; Graue-Hernandez, E. O.; Tran, V.; Reid, B.; Pu, J.; Mannis, M. J.; Zhao, M. Downregulation of PTEN at corneal wound sites accelerates wound healing through increased cell migration. Invest. Ophthalmol. Vis. Sci. 2011, 52, 2272–2278.

[24]

Wei, X.; Guan, L. B.; Fan, P.; Liu, X. H.; Liu, R.; Liu, Y.; Bai, H. Direct current electric field stimulates nitric oxide production and promotes NO-dependent angiogenesis: Involvement of the PI3K/AKT signaling pathway. J. Vasc. Res. 2020, 57, 195–205.

[25]

Wang, X. F.; Li, M. L.; Fang, Q. Q.; Zhao, W. Y.; Lou, D.; Hu, Y. Y.; Chen, J.; Wang, X. Z.; Tan, W. Q. Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes. Bioact. Mater. 2021, 6, 230–243.

[26]

Bao, F.; Hao, P. Q.; An, S.; Yang, Y.; Liu, Y.; Hao, Q.; Ejaz, M.; Guo, X. X.; Xu, T. R. AKT scaffold proteins: The key to controlling specificity of AKT signaling. Am. J. Physiol. Cell. Physiol. 2021, 321, C429–C442.

[27]

Fan, L.; Xiao, C. R.; Guan, P. F.; Zou, Y.; Wen, H. Q.; Liu, C.; Luo, Y. A.; Tan, G. X.; Wang, Q. Y.; Li, Y. F. et al. Extracellular matrix-based conductive interpenetrating network hydrogels with enhanced neurovascular regeneration properties for diabetic wounds repair. Adv. Healthc. Mater. 2022, 11, e2101556.

[28]

Wang, H. Q.; Yang, X. C.; Guo, Y.; Shui, L.; Li, S.; Bai, Y. F.; Liu, Y.; Zeng, M.; Xia, J. L. HERG1 promotes esophageal squamous cell carcinoma growth and metastasis through TXNDC5 by activating the PI3K/AKT pathway. J. Exp. Clin. Cancer Res. 2019, 38, 324.

[29]

Chen, Z. Y.; Zhou, B. Y.; Wang, X. S.; Zhou, G. D.; Zhang, W. J.; Yi, B. C.; Wang, W. B.; Liu, W. Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering. Acta Biomater. 2022, 145, 297–315.

[30]

Valentini, R. F.; Vargo, T. G.; Gardella, J. A. Jr.; Aebischer, P. Electrically charged polymeric substrates enhance nerve fibre outgrowth in vitro. Biomaterials 1992, 13, 183–190.

[31]

Benhadjala, W.; Bord-Majek, I.; Béchou, L.; Suhir, E.; Buet, M.; Rougé, F.; Gaud, V.; Plano, B.; Ousten, Y. Improved performances of polymer-based dielectric by using inorganic/organic core-shell nanoparticles. Appl. Phys. Lett. 2012, 101, 142901.

[32]

Fu, S. B.; Yi, S. Q.; Ke, Q. F.; Liu, K.; Xu, H. A self-powered hydrogel/nanogenerator system accelerates wound healing by electricity-triggered on-demand phosphatase and tensin homologue (PTEN) inhibition. ACS Nano 2023, 17, 19652–19666.

[33]

Luo, R. Z.; Liang, Y.; Yang, J. R.; Feng, H. Q.; Chen, Y.; Jiang, X. P.; Zhang, Z.; Liu, J.; Bai, Y.; Xue, J. T. et al. Reshaping the endogenous electric field to boost wound repair via electrogenerative dressing. Adv. Mater. 2023, 35, 2208395.

[34]

Wang, T. L.; Ouyang, H.; Luo, Y. P.; Xue, J. T.; Wang, E. G.; Zhang, L.; Zhou, Z. F.; Liu, Z. Q.; Li, X. F.; Tan, S. et al. Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration. Sci. Adv. 2024, 10, eadi6799.

[35]

Xue, R.; He, S. F.; He, Y. Q.; Huang, Y.; Wu, Y. B.; Shi, Q. S.; Liang, Y. R. Enhanced dielectric, energy storage, and actuated performance of TPU/BaTiO3 dielectric elastomer composites by thermal treatment. Polym. Compos. 2023, 44, 992–1003.

[36]

Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

[37]

Wang, Q. M.; Zhang, T.; Chen, Q. M.; Du, X. H. Effect of DC bias field on the complex materials coefficients of piezoelectric resonators. Sens. Actuat. A Phys. 2003, 109, 149–155.

[38]

Feng, S.; Zhang, H. L.; He, D. L.; Xu, Y. G.; Zhang, A. N.; Liu, Y.; Bai, J. B. Synergistic effects of BaTiO3/multiwall carbon nanotube as fillers on the electrical performance of triboelectric nanogenerator based on polydimethylsiloxane composite films. Energy Technol 2019, 7, 1900101.

[39]

Surmenev, R. A.; Orlova, T.; Chernozem, R. V.; Ivanova, A. A.; Bartasyte, A.; Mathur, S.; Surmeneva, M. A. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy 2019, 62, 475–506.

[40]

Liu, Y. M.; Wang, L. Y.; Zhao, L.; Yu, X. G.; Zi, Y. L. Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2020, 2, 318–340.

[41]

Nguyen, J. T.; Cheng, W. L. A review on epidermal nanogenerators: Recent progress of the future self-powered skins. Small Struct 2022, 3, 2200034.

[42]

Tian, J. J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C. C.; Zou, Y.; Jiang, D. J.; Zhang, J. S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts' proliferation and differentiation. Nano Energy 2019, 59, 705–714.

[43]

Mousavi, S. J.; Doweidar, M. H. Encapsulated piezoelectric nanoparticle-hydrogel smart material to remotely regulate cell differentiation and proliferation: A finite element model. Comput. Mech. 2019, 63, 471–489.

[44]

Tang, Y. F.; Wu, C.; Wu, Z. X.; Hu, L.; Zhang, W.; Zhao, K. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 2017, 7, 43360.

[45]

Weber, N.; Lee, Y. S.; Shanmugasundaram, S.; Jaffe, M.; Arinzeh, T. L. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 2010, 6, 3550–3556.

[46]

Jorgensen, A. M.; Gorkun, A.; Mahajan, N.; Willson, K.; Clouse, C.; Jeong, C. G.; Varkey, M.; Wu, M. S.; Walker, S. J.; Molnar, J. A. et al. Multicellular bioprinted skin facilitates human-like skin architecture in vivo. Sci. Transl. Med. 2023, 15, eadf7547.

[47]

Kong, Y.; Liu, F.; Ma, B. J.; Duan, J. Z.; Yuan, W. H.; Sang, Y. H.; Han, L.; Wang, S. H.; Liu, H. Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization. Adv. Sci. (Weinh.) 2021, 8, 2100962.

[48]

Wu, H.; Dong, H.; Tang, Z.; Chen, Y.; Liu, Y. C.; Wang, M.; Wei, X. H.; Wang, N.; Bao, S. S.; Yu, D. M. et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials 2023, 293, 121990.

[49]

Schwörer, S.; Pavlova, N. N.; Cimino, F. V.; King, B.; Cai, X.; Sizemore, G. M.; Thompson, C. B. Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment. Nat. Metab. 2021, 3, 1484–1499.

[50]

Massagué, J.; Sheppard, D. TGF-β signaling in health and disease. Cell 2023, 186, 4007–4037.

[51]

He, Y.; Sun, M. M.; Zhang, G. G.; Yang, J.; Chen, K. S.; Xu, W. W.; Li, B. Targeting PI3K/AKT signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425.

[52]

Burke, J. E.; Triscott, J.; Emerling, B. M.; Hammond, G. R. V. Beyond PI3Ks: Targeting phosphoinositide kinases in disease. Nat. Rev. Drug Discov. 2023, 22, 357–386.

[53]

Meng, X. T.; Arocena, M.; Penninger, J.; Gage, F. H.; Zhao, M.; Song, B. PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp. Neurol. 2011, 227, 210–217

[54]

Liu, Q.; Song, B. Electric field regulated signaling pathways. Int. J. Biochem. Cell Biol. 2014, 55, 264–268.

[55]

Wang, Y.; Liu, W. J.; Du, J.; Yu, Y.; Liang, N.; Liang, M.; Yao, G. D.; Cui, S.; Huang, H. F.; Sun, F. NGF promotes mouse granulosa cell proliferation by inhibiting ESR2 mediated down-regulation of CDKN1A. Mol. Cell. Endocrinol. 2015, 406, 68–77.

[56]

Takeo, M.; Lee, W.; Ito, M. Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a023267.

Nano Research
Pages 7461-7478
Cite this article:
Xu Q, Dai W, Li P, et al. Piezoelectric film promotes skin wound healing with enhanced collagen deposition and vessels regeneration via upregulation of PI3K/AKT. Nano Research, 2024, 17(8): 7461-7478. https://doi.org/10.1007/s12274-024-6717-z
Topics:

502

Views

6

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 01 March 2024
Revised: 18 April 2024
Accepted: 22 April 2024
Published: 25 June 2024
© Tsinghua University Press 2024
Return