Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

High-performance ultrathin Ag electrodes by chemical bond anchoring Ag atoms for stretchable organic light-emitting devices

Yue QinYawei WangXinxin WangYaqi ZhangJiahao XuKanchi DongYuehua Chen()Wenyong LaiXinwen Zhang()
State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Show Author Information

Graphical Abstract

View original image Download original image
Introducing amine-enriched biomaterials to anchor the growth of silver atoms for high-quality stretchable transparent electrodes. This innovation paves the way for efficient stretchable green phosphorescent organic light-emitting devices (OLEDs), showing the potential of stretchable silver electrodes for advanced flexible electronics.

Abstract

The progress of stretchable organic light-emitting devices (OLEDs) has brought about new possibilities for highly functional wearable electronics. However, the efficiency and durability of stretchable OLEDs have been limited by the performance of stretchable transparent electrodes. Here, we proposed an interface engineering strategy that involves anchoring the growth of silver (Ag) atoms with amine-enriched biomaterials for high-quality stretchable transparent electrodes. The strong interactions between the Ag atom and the amine group enable the uniform Ag electrodes at an ultralow thickness of 7 nm, and provide remarkable mechanical flexibility and strain endurance to the Ag electrodes. The distinct effects of different amino acids were investigated, and a deep understanding of their unique contributions to the film formation process was gained. The resulting ultrathin Ag electrodes exhibit outstanding optoelectrical properties (transmittance of ~ 98% and sheet resistance of ~ 8.7 Ω/sq) and excellent stretchability during 500 stretching cycles at 100% strain. Stretchable green phosphorescent OLEDs based on the Ag electrodes have been demonstrated with a current efficiency of up to ~ 70.4 cd/A. Impressively, the devices show excellent stretching stability, retaining ~ 89% of the original luminance and ~ 78% of the original current efficiency after 200 stretching cycles at 100% strain. This work opens up new possibilities for stretchable transparent electrodes, fostering advancements in wearable displays and other innovative flexible devices.

Electronic Supplementary Material

Download File(s)
6718_ESM.pdf (1.1 MB)

References

[1]

Choi, D. K.; Kim, D. H.; Lee, C. M.; Hafeez, H.; Sarker, S.; Yang, J. S.; Chae, H. J.; Jeong, G. W.; Choi, D. H.; Kim, T. W. et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nat. Commun. 2021, 12, 2864.

[2]

Yin, D.; Feng, J.; Ma, R.; Liu, Y. F.; Zhang, Y. L.; Zhang, X. L.; Bi, Y. G.; Chen, Q. D.; Sun, H. B. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 2016, 7, 11573.

[3]

Zhang, Z. T.; Wang, W. C.; Jiang, Y. W.; Wang, Y. X.; Wu, Y. L.; Lai, J. C.; Niu, S. M.; Xu, C. Y.; Shih, C. C.; Wang, C. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630.

[4]

Cho, C.; Kang, P.; Taqieddin, A.; Jing, Y. H.; Yong, K.; Kim, J. M.; Haque, M. F.; Aluru, N. R.; Nam, S. Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 2021, 4, 126–133.

[5]

Lim, M. S.; Nam, M.; Choi, S.; Jeon, Y.; Son, Y. H.; Lee, S. M.; Choi, K. C. Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief. Nano Lett. 2020, 20, 1526–1535.

[6]

Yao, L. Q.; Qin, Y.; Li, X. C.; Xue, Q.; Liu, F.; Cheng, T.; Li, G. J.; Zhang, X. W.; Lai, W. Y. High-efficiency stretchable organic light-emitting diodes based on ultra-flexible printed embedded metal composite electrodes. InfoMat 2023, 5, e12410.

[7]

Lee, S. M.; Cho, Y.; Kim, D. Y.; Chae, J. S.; Choi, K. C. Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Adv. Opt. Mater. 2015, 3, 1240–1247.

[8]

Azani, M. R.; Hassanpour, A.; Torres, T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 2020, 10, 2002536.

[9]

Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

[10]

Li, Z. H.; Li, H. K.; Zhu, X. Y.; Peng, Z. L.; Zhang, G. M.; Yang, J. J.; Wang, F.; Zhang, Y. F.; Sun, L. F.; Wang, R. et al. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv. Sci. 2022, 9, 2105331.

[11]

Zhao, Z. Y.; Liu, K.; Liu, Y. W.; Guo, Y. L.; Liu, Y. Q. Intrinsically flexible displays: Key materials and devices. Natl. Sci. Rev. 2022, 9, nwac090.

[12]

Woo, J. Y.; Park, M. H.; Jeong, S. H.; Kim, Y. H.; Kim, B.; Lee, T. W.; Han, T. H. Advances in solution-processed OLEDs and their prospects for use in displays. Adv. Mater. 2023, 35, 2207454.

[13]

Hippola, C.; Kaudal, R.; Manna, E.; Xiao, T.; Peer, A.; Biswas, R.; Slafer, W. D.; Trovato, T.; Shinar, J.; Shinar, R. Enhanced light extraction from OLEDs fabricated on patterned plastic substrates. Adv. Opt. Mater. 2018, 6, 1701244.

[14]

Dauzon, E.; Lin, Y. B.; Faber, H.; Yengel, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T. D. Stretchable and transparent conductive PEDOT:PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv. Funct. Mater. 2020, 30, 2001251.

[15]

Lee, H.; Han, G.; Kim, M.; Ahn, H. S.; Lee, H. High mechanical and tribological stability of an elastic ultrathin overcoating layer for flexible silver nanowire films. Adv. Mater. 2015, 27, 2252–2259.

[16]

Zhou, H. Y.; Han, S. J.; Harit, A. K.; Kim, D. H.; Kim, D. Y.; Choi, Y. S.; Kwon, H.; Kim, K. N.; Go, G. T.; Yun, H. J. et al. Graphene-based intrinsically stretchable 2D-contact electrodes for highly efficient organic light-emitting diodes. Adv. Mater. 2022, 34, 2203040.

[17]

Kang, H.; Jung, S.; Jeong, S.; Kim, G.; Lee, K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 2015, 6, 6503.

[18]

Jeong, S.; Jung, S.; Kang, H.; Lee, D.; Choi, S. B.; Kim, S.; Park, B.; Yu, K.; Lee, J.; Lee, K. Role of polymeric metal nucleation inducers in fabricating large-area, flexible, and transparent electrodes for printable electronics. Adv. Funct. Mater. 2017, 27, 1606842.

[19]

Lee, T.; Kim, D.; Suk, M. E.; Bang, G.; Choi, J.; Bae, J. S.; Yoon, J. H.; Moon, W. J.; Choi, D. Regulating Ag wettability via modulating surface stoichiometry of ZnO substrates for flexible electronics. Adv. Funct. Mater. 2021, 31, 2104372.

[20]

Ji, C. G.; Liu, D.; Zhang, C.; Guo, L. J. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 2020, 11, 3367.

[21]

Vj, L.; Kobayashi, N. P.; Islam, M. S.; Wu, W.; Chaturvedi, P.; Fang, N. X.; Wang, S. Y.; Williams, R. S. Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 2009, 9, 178–182.

[22]
Luo, S. H.; Lian, E. K.; He, J. L.; deMello, J. C. Flexible transparent electrodes formed from template-patterned thin-film silver. Adv. Mater., in press, https://doi.org/10.1002/adma.202300058.
[23]

Yun, J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 2017, 27, 1606641.

[24]

Zhang, C.; Zhao, D. W.; Gu, D. E.; Kim, H.; Ling, T.; Wu, Y. K. R.; Guo, L. J. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 2014, 26, 5696–5701.

[25]

Sergeant, N. P.; Hadipour, A.; Niesen, B.; Cheyns, D.; Heremans, P.; Peumans, P.; Rand, B. P. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv. Mater. 2012, 24, 728–732.

[26]

Kim, D. Y.; Han, Y. C.; Kim, H. C.; Jeong, E. G.; Choi, K. C. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv. Funct. Mater. 2015, 25, 7145–7153.

[27]

Schubert, S.; Meiss, J.; Müller-Meskamp, L.; Leo, K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv. Energy Mater. 2013, 3, 438–443.

[28]

Lee, S.; Guo, L. J. Bioinspired toughening mechanisms in a multilayer transparent conductor structure. ACS Appl. Mater. Interfaces 2022, 14, 7440–7449.

[29]

Hwang, B.; Kim, W.; Kim, J.; Lee, S.; Lim, S.; Kim, S.; Oh, S. H.; Ryu, S.; Han, S. M. Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite. Nano Lett. 2017, 17, 4740–4745.

[30]

Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053–3060.

[31]

Choi, J.; Bang, G.; Lee, T.; Tran, V. T. B.; Bae, J. S.; Choi, D. Simultaneous enhancement in visible transparency and electrical conductivity via the physicochemical alterations of ultrathin-silver-film-based transparent electrodes. Nano Lett. 2022, 22, 3133–3140.

[32]

Kang, H.; Hong, S.; Lee, J.; Lee, K. Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 2012, 24, 3005–3009.

[33]

Kim, Y. H.; Han, T. H.; Cho, H.; Min, S. Y.; Lee, C. L.; Lee, T. W. Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes. Adv. Funct. Mater. 2014, 24, 3808–3814.

[34]

Xiao, F. X.; Wang, F. C.; Fu, X. Z.; Zheng, Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. J. Mater. Chem. 2012, 22, 2868–2877.

[35]

Chen, Y. H.; Chu, S. Q.; Li, R. Q.; Qin, Y. B.; Xu, Y. N.; Zhang, X. W.; Wang, J.; Liu, M. J.; Lai, W. Y.; Huang, W. Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers. Org. Electron. 2019, 66, 1–6.

[36]

Qin, Y.; Yao, L. Q.; Zhang, F. B.; Li, R. Q.; Chen, Y. J.; Chen, Y. H.; Cheng, T.; Lai, W. Y.; Mi, B. X.; Zhang, X. W. et al. Highly stable silver nanowires/biomaterial transparent electrodes for flexible electronics. ACS Appl. Mater. Interfaces 2022, 14, 38021–38030.

Nano Research
Pages 7614-7620
Cite this article:
Qin Y, Wang Y, Wang X, et al. High-performance ultrathin Ag electrodes by chemical bond anchoring Ag atoms for stretchable organic light-emitting devices. Nano Research, 2024, 17(8): 7614-7620. https://doi.org/10.1007/s12274-024-6718-y
Topics:
Metrics & Citations  
Article History
Copyright
Return