AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Upcycling electroplating sludge into bioengineering-enabled highly stable dual-site Fe-Ni2P@C electrocatalysts for efficient oxygen evolution

Jiawen Liu1,§Zunpeng Zuo2,§Feng Gao1Kai Yi1Jiahui Lin1Mengye Wang1( )Zhang Lin3Feng Huang1,4
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou 510275, China
Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

§ Jiawen Liu and Zunpeng Zuo contributed equally to this work.

Show Author Information

Graphical Abstract

Bimetallic oxygen evolution reaction (OER) catalyst was prepared by eco-friendly and sustainable microbial engineering technique. The displacement of Ni/Fe in the crystal lattice intensifies the asymmetry of the electronic structure at the metal active sites, facilitating the deprotonation process.

Abstract

The advancement of bimetallic catalysts holds significant promise for the innovation of oxygen evolution reaction (OER) catalysts. Drawing from adsorbate evolution mechanism (AEM) and lattice oxygen oxidation mechanism (LOM), the incorporation of dual active sites has the potential to foster novel OER pathways, such as the coupled oxygen evolution mechanism (COM), which can surpass the limitations of OER and elevate catalytic performance. In this study, uniformly distributed Fe/Ni dual-site Fe-Ni2P@C electrocatalysts are crafted by upcycling metals in electroplating sludge via an eco-friendly and sustainable microbial engineering technique. Our findings indicate that a substantial number of defects emerge at the Ni2P crystal during the OER process, laying the groundwork for lattice oxygen involvement. Moreover, the displacement of Ni/Fe in the crystal lattice intensifies the asymmetry of the electronic structure at the metal active sites, facilitating the deprotonation process. This research introduces an innovative paradigm for the synthesis of effective and robust transition metal-based OER catalysts, with implications for sustainable energy generation technologies.

Electronic Supplementary Material

Download File(s)
6719_ESM.pdf (1.2 MB)

References

[1]

Fa, D. J.; Tao, Y. H.; Pan, X.; Wang, D. J.; Feng, G. Y.; Yuan, J. Y.; Luo, Q. Q.; Song, Y. R.; Gao, X. J.; Yang, L. et al. Spatial well-defined bimetallic two-dimensional polymers with single-layer thickness for electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202207845.

[2]

Yao, N.; Wang, G. W.; Jia, H. N.; Yin, J. L.; Cong, H. J.; Chen, S. L.; Luo, W. Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation. Angew. Chem., Int. Ed. 2022, 61, e202117178.

[3]

Zuo, Y. P.; Rao, D. W.; Ma, S. N.; Li, T. T.; Tsang, Y. H.; Kment, S.; Chai, Y. Valence engineering via dual-cation and boron doping in pyrite selenide for highly efficient oxygen evolution. ACS Nano 2019, 13, 11469–11476.

[4]

Jing, T. Y.; Zhang, N.; Zhang, C. N.; Mourdikoudis, S.; Sofer, Z.; Li, W.; Li, P. J.; Li, T. T.; Zuo, Y. P.; Rao, D. W. Improving C-N-FeO x oxygen evolution electrocatalysts through hydroxyl-modulated local coordination environment. ACS Catal. 2022, 12, 7443–7452.

[5]

Wu, T. Z.; Ren, X.; Sun, Y. M.; Sun, S. N.; Xian, G. Y.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A. et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 2021, 12, 3634.

[6]

Zhang, Y. W.; You, L. S.; Liu, Q. L.; Li, Y. L.; Li, T. S.; Xue, Z. Q.; Li, G. Q. Interfacial charge transfer in a hierarchical Ni2P/FeOOH heterojunction facilitates electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2021, 13, 2765–2771.

[7]

Liang, X.; Zheng, B. X.; Chen, L. G.; Zhang, J. T.; Zhuang, Z. B.; Chen, B. H. MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2017, 9, 23222–23229.

[8]

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

[9]

Yu, J.; Zhang, T.; Sun, Y. Q.; Li, X. J.; Wu, B.; Men, D. D.; Li, Y. Hollow FeP/Fe3O4 hybrid nanoparticles on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 12783–12792.

[10]

Zhou, X. B.; Liao, X. B.; Pan, X. L.; Yan, M. Y.; He, L.; Wu, P. J.; Zhao, Y.; Luo, W.; Mai, L. Q. Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by on-chip micro-device. Nano Energy 2021, 83, 105748.

[11]

Chen, S. Y.; Zhang, T.; Han, J. Y.; Qi, H.; Jiao, S. H.; Hou, C. M.; Guan, J. Q. Interface engineering of Fe-Sn-Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano Res. Energy 2024, 3, e9120106.

[12]

Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

[13]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[14]

Wang, L. G.; Su, H.; Tan, G. Y.; Xin, J. J.; Wang, X. G.; Zhang, Z.; Li, Y. P.; Qiu, Y.; Li, X. H.; Li, H. S. et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation. Adv. Mater. 2024, 36, 2302642.

[15]

Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co-Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

[16]

Xu, Z. H.; Zuo, W.; Yu, Y. Y.; Liu, J. Y.; Cheng, G. Z.; Zhao, P. P. Surface reconstruction facilitated by fluorine migration and bimetallic center in NiCo bimetallic fluoride toward oxygen evolution reaction. Adv. Sci. 2024, 11, 2306758.

[17]

Yao, Y.; Wu, J. X.; Feng, Q. X.; Zeng, K.; Wan, J.; Zhang, J. C.; Mao, B. Y.; Hu, K.; Chen, L. M.; Zhang, H. et al. Spontaneous internal electric field in heterojunction boosts bifunctional oxygen electrocatalysts for zinc-air batteries: Theory, experiment, and application. Small 2023, 19, 2302015.

[18]

Baek, J.; Hossain, M. D.; Mukherjee, P.; Lee, J.; Winther, K. T.; Leem, J.; Jiang, Y.; Chueh, W. C.; Bajdich, M.; Zheng, X. L. Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nat. Commun. 2023, 14, 5936.

[19]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[20]

Xiao, L. Y.; Bai, X.; Han, J. Y.; Tang, T. M.; Chen, S. Y.; Qi, H.; Hou, C. M.; Bai, F. Q.; Wang, Z. L.; Guan, J. Q. Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media. Nano Res. 2024, 17, 2429–2437.

[21]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[22]

Zhou, X. Y.; Yang, T. T.; Li, T.; Zi, Y. J.; Zhang, S. J.; Yang, L.; Liu, Y. K.; Yang, J.; Tang, J. J. In-situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting. Nano Res. Energy 2023, 2, e9120086

[23]

Fang, C.; Tang, X. M.; Yi, Q. F. Adding Fe/dicyandiamide to Co-MOF to greatly improve its ORR/OER bifunctional electrocatalytic activity. Appl. Catal. B: Environ. 2024, 341, 123346.

[24]

Wu, L. B.; Ning, M. H.; Xing, X. X.; Wang, Y.; Zhang, F. H.; Gao, G. H.; Song, S. W.; Wang, D. Z.; Yuan, C. Q.; Yu, L. et al. Boosting oxygen evolution reaction of (Fe,Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions. Adv. Mater. 2023, 35, 2306097.

[25]

Zhang, D. N.; Cheng, H.; Hao, X. Y.; Sun, Q.; Zhang, T. Y.; Xu, X. W.; Ma, Z. L.; Yang, T.; Ding, J.; Liu, X. Q. et al. Stable seawater oxidation at high-salinity conditions promoted by low iron-doped non-noble-metal electrocatalysts. ACS Catal. 2023, 13, 15581–15590.

[26]

Ye, K.; Zhang, Y. Q.; Mourdikoudis, S.; Zuo, Y. P.; Liang, J. G.; Wang, M. Y. Application of oxygen-group-based amorphous nanomaterials in electrocatalytic water splitting. Small 2023, 19, 2302341.

[27]

Gu, X. Y.; Li, S. S.; Shao, W. Q.; Mu, X. Q.; Yang, Y. X.; Ge, Y.; Meng, W. T.; Liu, G. X.; Liu, S. L.; Mu, S. C. Cation/anion dual-vacancy pair modulated atomically-thin Se x -Co3S4 nanosheets with extremely high water oxidation performance in ultralow-concentration alkaline solutions. Small 2022, 18, 2108097.

[28]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[29]

Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.

[30]

Zhao, H. Y.; Yin, J.; Xi, P. X. High-efficiency catalytic interface IrO x /CeO2 with adsorbate evolution mechanism boosts oxygen evolution reaction in acid media. Trans. Tianjin Univ. 2023, 29, 395–405.

[31]

Hu, F.; Yu, D. S.; Zeng, W. J.; Lin, Z. Y.; Han, S. L.; Sun, Y. J.; Wang, H.; Ren, J. W.; Hung, S. F.; Li, L. L. et al. Active site tailoring of metal-organic frameworks for highly efficient oxygen evolution. Adv. Energy Mater. 2023, 13, 2301224.

[32]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[33]

Tang, L. N.; Yang, Y. L.; Guo, H. Q.; Wang, Y.; Wang, M. J.; Liu, Z. Q.; Yang, G. M.; Fu, X. Z.; Luo, Y.; Jiang, C. X. et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv. Funct. Mater. 2022, 32, 2112157.

[34]

Fang, C.; Zhou, J.; Zhang, L. L.; Wan, W. C.; Ding, Y. X.; Sun, X. Y. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 2023, 14, 4449.

[35]

Parra-Puerto, A.; Ng, K. L.; Fahy, K.; Goode, A. E.; Ryan, M. P.; Kucernak, A. Supported transition metal phosphides: Activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal. 2019, 9, 11515–11529.

[36]

Chen, D.; Pu, Z. H.; Lu, R. H.; Ji, P. X.; Wang, P. Y.; Zhu, J. W.; Lin, C.; Li, H. W.; Zhou, X. G.; Hu, Z. Y. et al. Ultralow Ru loading transition metal phosphides as high-efficient bifunctional electrocatalyst for a solar-to-hydrogen generation system. Adv. Energy Mater. 2020, 10, 2000814.

[37]

Huang, L. C.; Yao, R. Q.; Wang, X. Q.; Sun, S.; Zhu, X. X.; Liu, X. H.; Kim, M. G.; Lian, J. S.; Liu, F. Z.; Li, Y. Q. et al. In situ phosphating of Zn-doped bimetallic skeletons as a versatile electrocatalyst for water splitting. Energy Environ. Sci. 2022, 15, 2425–2434

[38]

Li, G. X.; Wang, J. G.; Yu, J. Y.; Liu, H.; Cao, Q.; Du, J. L.; Zhao, L. L.; Jia, J.; Liu, H.; Zhou, W. J. Ni-Ni3P nanoparticles embedded into N,P-doped carbon on 3D graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Appl. Catal. B: Environ. 2020, 261, 118147.

[39]

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

[40]

Ma, M. J.; Feng, Z. C.; Zhang, X. W.; Sun, C. Y.; Wang, H. Q.; Zhou, W. J.; Liu, H. Progress in the preparation and application of electrocatalysts based on microorganisms as intelligent templates. Acta Phys.—Chim. Sin. 2022, 38, 2106003.

[41]

Zhou, H.; Cai, J.; Gu, B.; Zhang, D. Y.; Gong, D. Biohybrid urchin-like ZnO-based microspheres with tunable hierarchical structures and enhanced photoelectrocatalytic propeRties. Small 2024, 20, 2305511.

[42]

Min, Y.; Zhou, X.; Chen, J. J.; Chen, W. X.; Zhou, F. Y.; Wang, Z. Y.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. T. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

[43]

Zhou, W. J.; Xiong, T. L.; Shi, C. H.; Zhou, J.; Zhou, K.; Zhu, N. W.; Li, L. G.; Tang, Z. H.; Chen, S. W. Bioreduction of precious metals by microorganism: Efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 8416–8420.

[44]

Ye, X. C.; Lin, Z. H.; Liang, S. J.; Huang, X. H.; Qiu, X. Y.; Qiu, Y. C.; Liu, X. M.; Xie, D.; Deng, H.; Xiong, X. H. et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 2019, 19, 1860–1866.

[45]

Guo, X. M.; Zhang, W.; Zhang, D.; Qian, S. L.; Tong, X. Z.; Zhou, D. C.; Zhang, J. H.; Yuan, A. H. Submicron Co9S8/CoS/carbon spheres derived from bacteria for the electrocatalytic oxygen reduction reaction. ChemElectroChem 2019, 6, 4571–4575.

[46]

Shen, S. H.; Zhou, R. F.; Li, Y. H.; Liu, B.; Pan, G. X.; Liu, Q.; Xiong, Q. Q.; Wang, X. L.; Xia, X. H.; Tu, J. P. Bacterium, fungus, and virus microorganisms for energy storage and conversion. Small Methods 2019, 3, 1900596.

[47]

Gahlawat, G.; Choudhury, A. R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019, 9, 12944–12967.

[48]

Markou, G.; Mitrogiannis, D.; Çelekli, A.; Bozkurt, H.; Georgakakis, D.; Chrysikopoulos, C. V. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem. Eng. J. 2015, 259, 806–813.

[49]

Li, J. Y.; Han, H. X.; Chang, Y. H.; Wang, B. The material-microorganism interface in microbial hybrid electrocatalysis systems. Nanoscale 2023, 15, 6009–6024.

[50]

Wang, B.; Zeng, C. P.; Chu, K. H.; Wu, D.; Yip, H. Y.; Ye, L. Q.; Wong, P. K. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles. Adv. Energy Mater. 2017, 7, 1700611.

[51]

Jimenez-Sandoval, R.; Pedireddy, S.; Katuri, K. P.; Saikaly, P. E. Facile biological-based synthesis of size-controlled palladium nanoclusters anchored on the surface of Geobacter sulfurreducens and their application in electrocatalysis. ACS Sustainable Chem. Eng. 2023, 11, 1100–1109.

[52]

Han, B.; Ou, X. W.; Zhong, Z. Q.; Liang, S. J.; Yan, X.; Deng, H.; Lin, Z. Photoconversion of anthropogenic CO2 into tunable syngas over industrial wastes derived metal-organic frameworks. Appl. Catal. B: Environ. 2021, 283, 119594.

[53]

Yu, Y.; Huang, Q. Y.; Zhou, J.; Wu, Z.; Deng, H.; Liu, X. M.; Lin, Z. One-step extraction of high-purity CuCl2·2H2O from copper-containing electroplating sludge based on the directional phase conversion. J. Hazard. Mater. 2021, 413, 125469

Nano Research
Pages 6984-6992
Cite this article:
Liu J, Zuo Z, Gao F, et al. Upcycling electroplating sludge into bioengineering-enabled highly stable dual-site Fe-Ni2P@C electrocatalysts for efficient oxygen evolution. Nano Research, 2024, 17(8): 6984-6992. https://doi.org/10.1007/s12274-024-6719-x
Topics:

433

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 March 2024
Revised: 21 April 2024
Accepted: 22 April 2024
Published: 28 May 2024
© Tsinghua University Press 2024
Return