AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A thermo-responsive rewritable plasmonic bio-memory by regulating single core-satellite gold nanocluster dissociation

Wen Zhang1,§Yi Wang1,§Yamin Wang1Xiaomei Lu3,4Weibing Wu2( )Quli Fan1( )Lei Zhang1( )
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou 450001, China
Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China

§ Wen Zhang and Yi Wang contributed equally to this work.

Show Author Information

Graphical Abstract

With short time irradiation by 633 nm microbeam laser, every individual gold nanoparticles (AuNPs) could be excited and led to dissociation of the satellite AuNPs. And the plasmonic assembly could be employed as a nano bio-memory due to its color would change from yellow to green, and showed more significant reduction in the red channel of the dark-field microscopy (DFM) images which could be defined to state “0” and “1” respectively.

Abstract

A thermo-responsive rewritable plasmonic bio-memory chip has been successfully fabricated on an indium tin oxide (ITO) glass slide by assembling core-satellite gold nanoclusters with different size of gold nanoparticles (AuNPs) using double-strand DNA (dsDNA) linker. And the prepared 70@DNA20@13 gold nanoclusters (AuNCs) exhibited more stable and greater photothermal conversion ability. With short time irradiation by 633 nm microbeam laser, every individual AuNCs could be excited and remove the satellite AuNPs on its surface. Especially, in the dissociation process of AuNCs with 3−5 satellite, its color would change from yellow to green, which showed more significant reduction in the red channel of the dark-field microscopy (DFM) images and could be defined to state “0” and “1” respectively. Besides, this plasmonic nano bio-memory could transform cyclically its state between 0 and 1 which exhibited excellent rewritable ability.

Electronic Supplementary Material

Download File(s)
6720_ESM.pdf (1.3 MB)

References

[1]

Olesiak-Banska, J.; Waszkielewicz, M.; Obstarczyk, P.; Samoc, M. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem. Soc. Rev. 2019, 48, 4087–4117.

[2]

Nasrin, F.; Chowdhury, A. D.; Takemura, K.; Lee, J.; Adegoke, O.; Deo, V. K.; Abe, F.; Suzuki, T.; Park, E. Y. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens. Bioelectron. 2018, 122, 16–24.

[3]

Mao, Z. L.; Vang, H.; Garcia, A.; Tohti, A.; Stokes, B. J.; Nguyen, S. C. Carrier diffusion-the main contribution to size-dependent photocatalytic activity of colloidal gold nanoparticles. ACS Catal. 2019, 9, 4211–4217.

[4]

Ren, X. G.; Cheng, J. Q.; Zhang, S. Q.; Li, X. C.; Rao, T. K.; Huo, L. J.; Hou, J. H.; Choy, W. C. H. High efficiency organic solar cells achieved by the simultaneous plasmon-optical and plasmon-electrical effects from plasmonic asymmetric modes of gold nanostars. Small 2016, 12, 5200–5207.

[5]

Tan, Y.; He, K.; Tang, B.; Chen, H. R.; Zhao, Z. P.; Zhang, C. Q.; Lin, L.; Liu, J. B. Precisely regulated luminescent gold nanoparticles for identification of cancer metastases. ACS Nano 2020, 14, 13975–13985.

[6]

Ohodnicki, P. R. Jr.; Brown, T. D.; Holcomb, G. R.; Tylczak, J.; Schultz, A. M.; Baltrus, J. P. High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides. Sens. Actuators, B 2014, 202, 489–499.

[7]

Matus, M. F.; Häkkinen, H. Atomically precise gold nanoclusters: Towards an optimal biocompatible system from a theoretical-experimental strategy. Small 2021, 17, 2005499.

[8]

Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P. L.; Kuo, C. H.; Huang, M. H.; Hsu, C. S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967.

[9]

Shin, Y. B.; Lee, J. M.; Park, M. R.; Kim, M. G.; Chung, B. H.; Pyo, H. B.; Maeng, S. Analysis of recombinant protein expression using localized surface plasmon resonance (LSPR). Biosens. Bioelectron. 2007, 22, 2301–2307.

[10]

Hu, Y. L.; Zhang, L.; Zhang, Y.; Wang, B.; Wang, Y. W.; Fan, Q. L.; Huang, W.; Wang, L. H. Plasmonic nanobiosensor based on hairpin DNA for detection of trace oligonucleotides biomarker in cancers. ACS Appl. Mater. Interfaces 2015, 7, 2459–2466.

[11]

Zhang, L.; Zhang, Y.; Hu, Y. L.; Fan, Q. L.; Yang, W. J.; Li, A. R.; Li, S. Z.; Huang, W.; Wang, L. H. Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs. Chem. Commun. 2015, 51, 294–297.

[12]

Zhang, Q.; Yan, H. H.; Ru, C.; Zhu, F.; Zou, H. Y.; Gao, P. F.; Huang, C. Z.; Wang, J. Plasmonic biosensor for the highly sensitive detection of microRNA-21 via the chemical etching of gold nanorods under a dark-field microscope. Biosens. Bioelectron. 2022, 201, 113942.

[13]

Zhang, L.; Li, Y.; Li, D. W.; Jing, C.; Chen, X. Y.; Lv, M.; Huang, Q.; Long, Y. T.; Willner, I. Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. Angew. Chem., Int. Ed. 2011, 50, 6789–6792.

[14]

Oh, J. W.; Lim, D. K.; Kim, G. H.; Suh, Y. D.; Nam, J. M. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. J. Am. Chem. Soc. 2014, 136, 14052–14059.

[15]

Tanwar, S.; Haldar, K. K.; Sen, T. DNA origami directed Au nanostar dimers for single-molecule surface-enhanced Raman scattering. J. Am. Chem. Soc. 2017, 139, 17639–17648.

[16]

Jia, X. N.; Xu, W. G.; Ye, Z. K.; Wang, Y. L.; Dong, Q.; Wang, E. K.; Li, D.; Wang, J. Functionalized graphene@gold nanostar/lipid for pancreatic cancer gene and photothermal synergistic therapy under photoacoustic/photothermal imaging dual-modal guidance. Small 2020, 16, 2003707.

[17]

Sun, M. M.; Liu, F.; Zhu, Y. K.; Wang, W. S.; Hu, J.; Liu, J.; Dai, Z. F.; Wang, K.; Wei, Y.; Bai, J. et al. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale 2016, 8, 4452–4457.

[18]

Cheng, Y.; Samia, A. C.; Meyers, J. D.; Panagopoulos, I.; Fei, B. W.; Burda, C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 2008, 130, 10643–10647.

[19]

Zhu, H.; Lussier, F.; Ducrot, C.; Bourque, M. J.; Spatz, J. P.; Cui, W. L.; Yu, L.; Peng, W.; Trudeau, L.É.; Bazuin, C. G. et al. Block copolymer brush layer-templated gold nanoparticles on nanofibers for surface-enhanced Raman scattering optophysiology. ACS Appl. Mater. Interfaces 2019, 11, 4373–4384.

[20]

Tian, Y. Y.; Shuai, Z. H.; Shen, J. J.; Zhang, L.; Chen, S. F.; Song, C. Y.; Zhao, B. M.; Fan, Q. L.; Wang, L. H. Plasmonic heterodimers with binding site-dependent hot spot for surface-enhanced Raman scattering. Small 2018, 14, 1800669.

[21]

Doering, W. E.; Nie, S. M. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 2002, 106, 311–317.

[22]

Shim, J. E.; Kim, Y. J.; Choe, J. H.; Lee, T. G.; You, E. A. Single-nanoparticle-based digital SERS sensing platform for the accurate quantitative detection of SARS-CoV-2. ACS Appl. Mater. Interfaces 2022, 14, 38459–38470.

[23]

Lee, H.; Lee, J. H.; Jin, S. M.; Suh, Y. D.; Nam, J. M. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~ 1 nm gap and surface-enhanced Raman scattering. Nano Lett. 2013, 13, 6113–6121.

[24]

Niu, R. J.; Song, C. Y.; Gao, F.; Fang, W. N.; Jiang, X. Y.; Ren, S. K.; Zhu, D.; Su, S.; Chao, J.; Chen, S. F. et al. DNA origami-based nanoprinting for the assembly of plasmonic nanostructures with single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2021, 60, 11695–11701.

[25]

Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004, 4, 899–903.

[26]

Xu, J. X.; Siriwardana, K.; Zhou, Y. D.; Zou, S. L.; Zhang, D. M. Quantification of gold nanoparticle ultraviolet-visible extinction, absorption, and scattering cross-section spectra and scattering depolarization spectra: The effects of nanoparticle geometry, solvent composition, ligand functionalization, and nanoparticle aggregation. Anal. Chem. 2018, 90, 785–793.

[27]

Yang, Z.; Song, J. B.; Dai, Y. L.; Chen, J. Y.; Wang, F.; Lin, L. S.; Liu, Y. J.; Zhang, F. W.; Yu, G. C.; Zhou, Z. J. et al. Self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics 2017, 7, 2177–2185.

[28]

Tort, N.; Salvador, J. P.; Marco, M. P. Multimodal plasmonic biosensing nanostructures prepared by DNA-directed immobilization of multifunctional DNA-gold nanoparticles. Biosens. Bioelectron. 2017, 90, 13–22.

[29]

Lee, S. A.; Link, S. Chemical interface damping of surface plasmon resonances. Acc. Chem. Res. 2021, 54, 1950–1960.

[30]

Sönnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745.

[31]

Ye, W. X.; Götz, M.; Celiksoy, S.; Tüting, L.; Ratzke, C.; Prasad, J.; Ricken, J.; Wegner, S. V.; Ahijado-Guzmán, R.; Hugel, T. et al. Conformational dynamics of a single protein monitored for 24 h at video rate. Nano Lett. 2018, 18, 6633–6637.

[32]

Qin, Z. P.; Wang, Y. R.; Randrianalisoa, J.; Raeesi, V.; Chan, W. C. W.; Lipiński, W.; Bischof, J. C. Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Sci. Rep. 2016, 6, 29836.

[33]

Liu, X.; Zhou, W.; Wang, T. J.; Miao, S.; Lan, S.; Wei, Z. C.; Meng, Z.; Dai, Q. F.; Fan, H. H. Highly localized, efficient, and rapid photothermal therapy using gold nanobipyramids for liver cancer cells triggered by femtosecond laser. Sci. Rep. 2023, 13, 3372.

[34]

Krueger, D.; Graves, A.; Chu, Y.; Pan, J.; Lee, S. E.; Park, Y. Integrated plasmonic gold nanoparticle dimer array for sustainable solar water disinfection. ACS Appl. Nano Mater. 2023, 6, 5568–5577.

[35]

Ali, M. R. K.; Wu, Y.; El-Sayed, M. A. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J. Phys. Chem. C 2019, 123, 15375–15393.

[36]

Kim, J.; Chun, S. H.; Amornkitbamrung, L.; Song, C.; Yuk, J. S.; Ahn, S. Y.; Kim, B. W.; Lim, Y. T.; Oh, B. K.; Um, S. H. Gold nanoparticle clusters for the investigation of therapeutic efficiency against prostate cancer under near-infrared irradiation. Nano Convergence 2020, 7, 5.

[37]

Lee, J.; Le, Q. V.; Ko, S.; Kang, S.; Macgregor, R. B. Jr.; Shim, G.; Oh, Y. K. Blood-declustering excretable metal clusters assembled in DNA matrix. Biomaterials 2022, 289, 121754.

[38]

Dey, P.; Tabish, T. A.; Mosca, S.; Palombo, F.; Matousek, P.; Stone, N. Plasmonic nanoassemblies: Tentacles beat satellites for boosting broadband NIR plasmon coupling providing a novel candidate for SERS and photothermal therapy. Small 2020, 16, 1906780.

[39]

Schwartz-Duval, A. S.; Konopka, C. J.; Moitra, P.; Daza, E. A.; Srivastava, I.; Johnson, E. V.; Kampert, T. L.; Fayn, S.; Haran, A.; Dobrucki, L. W. et al. Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold. Nat. Commun. 2020, 11, 4530.

[40]

Chen, J. X.; Gong, M. F.; Fan, Y. L.; Feng, J.; Han, L. L.; Xin, H. L.; Cao, M. H.; Zhang, Q.; Zhang, D.; Lei, D. Y. et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 2022, 16, 910–920.

[41]

Zhang, R. L.; Wang, L. L.; Wang, X. F.; Jia, Q.; Chen, Z.; Yang, Z.; Ji, R. C.; Tian, J.; Wang, Z. L. Acid-induced in vivo assembly of gold nanoparticles for enhanced photoacoustic imaging-guided photothermal therapy of tumors. Adv. Healthc. Mater. 2020, 9, 2000394.

[42]

Cheng, X.; Sun, R.; Yin, L.; Chai, Z. F.; Shi, H. B.; Gao, M. Y. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894.

[43]

Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276.

[44]

Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 3448.

[45]

Gudnason, H.; Dufva, M.; Bang, D. D.; Wolff, A. A. Comparison of multiple DNA dyes for real-time PCR: Effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007, 35, e127.

[46]

Gresham, D.; Curry, B.; Ward, A.; Gordon, D. B.; Brizuela, L.; Kruglyak, L.; Botstein, D. Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes. Proc. Natl. Acad. Sci. USA 2010, 107, 1482–1487.

[47]

Gong, P. Q.; Wang, Y. M.; Zhou, X.; Wang, S. K.; Zhang, Y. N.; Zhao, Y.; Nguyen, L. V.; Ebendorff-Heidepriem, H.; Peng, L.; Warren-Smith, S. C. et al. In situ temperature-compensated DNA hybridization detection using a dual-channel optical fiber sensor. Anal. Chem. 2021, 93, 10561–10567

[48]

He, M. Q.; Chen, S.; Yao, K.; Wang, K.; Yu, Y. L.; Wang, J. H. Oriented assembly of gold nanoparticles with freezing-driven surface DNA manipulation and its application in SERS-based microRNA assay. Small Methods 2019, 3, 1900017.

[49]

Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: Real-time monitoring of a click reaction. Angew. Chem., Int. Ed. 2013, 52, 6011–6014

[50]

Wang, C. K.; Tan, R.; Chen, D. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Talanta 2018, 182, 363–370.

[51]

Li, B. X.; Liu, Y. J.; Liu, Y. X.; Tian, T. T.; Yang, B. B.; Huang, X. D.; Liu, J. W.; Liu, B. H. Construction of dual-color probes with target-triggered signal amplification for in situ single-molecule imaging of microRNA. ACS Nano 2020, 14, 8116–8125.

[52]

Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C. What controls the optical properties of DNA-linked gold nanoparticle assemblies. J. Am. Chem. Soc. 2000, 122, 4640–4650.

[53]

Yoon, J. H.; Lim, J.; Yoon, S. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. ACS Nano 2012, 6, 7199–7208.

[54]

Choi, I.; Song, H. D.; Lee, S.; Yang, Y. I.; Kang, T.; Yi, J. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. J. Am. Chem. Soc. 2012, 134, 12083–12090.

[55]

Liu, A. H.; Wang, G. Q.; Wang, F.; Zhang, Y. Gold nanostructures with near-infrared plasmonic resonance: Synthesis and surface functionalization. Coord. Chem. Rev. 2017, 336, 28–42.

[56]

Ode, K.; Honjo, M.; Takashima, Y.; Tsuruoka, T.; Akamatsu, K. Highly sensitive plasmonic optical sensors based on gold core-satellite nanostructures immobilized on glass substrates. ACS Appl. Mater. Interfaces 2016, 8, 20522–20526.

[57]

Deng, J. J.; Song, Y.; Wang, Y.; Di, J. W. Label-free optical biosensor based on localized surface plasmon resonance of twin-linked gold nanoparticles electrodeposited on ITO glass. Biosens. Bioelectron. 2010, 26, 615–619.

[58]

Manghi, M.; Destainville, N. Physics of base-pairing dynamics in DNA. Phys. Rep. 2016, 631, 1–41.

[59]

He, L. C.; Brasino, M.; Mao, C. C.; Cho, S.; Park, W.; Goodwin, A. P.; Cha, J. N. DNA-assembled core-satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017, 13, 1700504.

Nano Research
Pages 7275-7282
Cite this article:
Zhang W, Wang Y, Wang Y, et al. A thermo-responsive rewritable plasmonic bio-memory by regulating single core-satellite gold nanocluster dissociation. Nano Research, 2024, 17(8): 7275-7282. https://doi.org/10.1007/s12274-024-6720-4
Topics:

660

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 March 2024
Revised: 14 April 2024
Accepted: 23 April 2024
Published: 25 June 2024
© Tsinghua University Press 2024
Return