AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced boron neutron capture therapy (BNCT) through controlled drug release via boron-loaded nanofiber mats

Wenyong Huang1,2,§Yongjin Yang1,2,§Yong Pan1,2Shiwei Jing3Yanxin Qi1,2( )Yubin Huang1,2( )
Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Changchun 130024, China
School of Physics, Northeast Normal University, Changchun 130024, China

§ Wenyong Huang and Yongjin Yang contributed equally to this work.

Show Author Information

Graphical Abstract

10BA-loaded nanofiber mats were applied to boron neutron capture therapy by in situ administration.Through the controlled release of 10BA from nanofiber mats, the DNA of cancer cells was damaged and apoptosis was induced under the irradiation of thermal neutrons.

Abstract

Boron neutron capture therapy (BNCT) is a novel binary therapy combining boron targeted drugs and neutron irradiation, which can selectively and effectively kill cancer cells at the cellular scale. Controlled release of boron drug and its accumulation in tumor sites are the crux of BNCT. Here, we developed a 10B-boric acid (10BA)-loaded nanofiber applying for BNCT by in situ administration. The nanofibers were obtained by electrospinning technique using polyethylene glycol/polylactide (PEO/PLA) block copolymers. By changing the ratio of hydrophilicity to hydrophobicity of the nanofibers, the controlled release and the effective accumulation of boron 10 isotope (10B) were achieved in situ. The 10B content in tumor could reach to 2540 µg/g, significantly exceeding the required level of 20–50 µg/g for BNCT operation. Utilizing pertinent DNA damage experiments, direct evidence and quantified data of BNCT-induced DNA damage in tumor cells were obtained for the first time. Transcriptome sequencing was employed to predict the molecular mechanisms and potential signaling pathways of BNCT, providing theoretical basis for future combined therapies. The antitumor efficiency of BNCT was demonstrated by establishing mice model of subcutaneous tumor and tumor recurrence. The research presents a novel boron-loaded nanofiber mats for BNCT, which enables controlled drug release and holds significant potential in the treatment of unresectable or postoperative residual tumors.

Electronic Supplementary Material

Download File(s)
6721_ESM.pdf (13.6 MB)

References

[1]

Kuthala, N.; Shanmugam, M.; Yao, C. L.; Chiang, C. S.; Hwang, K. C. One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials 2022, 290, 121861.

[2]

Morrison, K. Development of novel LAT1 targeting small molecules for boron neutron capture therapy (BNCT) and potential application for treating glioblastoma. Neuro-Oncology 2022, 24, iv5.

[3]

Nomoto, T.; Inoue, Y.; Yao, Y.; Suzuki, M.; Kanamori, K.; Takemoto, H.; Matsui, M.; Tomoda, K.; Nishiyama, N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci. Adv. 2020, 6, eaaz1722.

[4]

Li, J.; Kong, J. L.; Ma, S. H.; Li, J. C.; Mao, M. R.; Chen, K.; Chen, Z. T.; Zhang, J. X.; Chang, Y. A.; Yuan, H. et al. Exosome-coated 10B carbon dots for precise boron neutron capture therapy in a mouse model of glioma in situ. Adv. Funct. Mater. 2021, 31, 2100969.

[5]

Wang, Y. Q.; Reina, G.; Kang, H. G.; Chen, X. X.; Zou, Y. J.; Ishikawa, Y.; Suzuki, M.; Komatsu, N. Polyglycerol functionalized 10B enriched boron carbide nanoparticle as an effective bimodal anticancer nanosensitizer for boron neutron capture and photothermal therapies. Small 2022, 18, 2204044.

[6]

Nomoto, T.; Yao, Y.; Inoue, Y.; Suzuki, M.; Kanamori, K.; Takemoto, H.; Matsui, M.; Tomoda, K.; Nishiyama, N. Fructose-functionalized polymers to enhance therapeutic potential of p-boronophenylalanine for neutron capture therapy. J. Control. Release 2021, 332, 184–193.

[7]

Dymova, M. A.; Taskaev, S. Y.; Richter, V. A.; Kuligina, E. V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421.

[8]

Hu, K.; Yang, Z. M.; Zhang, L. L.; Xie, L.; Wang, L.; Xu, H.; Josephson, L.; Liang, S. H.; Zhang, M. R. Boron agents for neutron capture therapy. Coord. Chem. Rev. 2020, 405, 213139.

[9]

Barth, R. F.; Mi, P.; Yang, W. L. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35.

[10]

Coghi, P.; Li, J. X.; Hosmane, N. S.; Zhu, Y. H. Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med. Res. Rev. 2023, 43, 1809–1830.

[11]

Singh, H.; Dhibar, D. P.; Naidu, G. S. R. S. N. K. Life-threatening corrosive injury with hepato-renal-pulmonary failure in boric acid poisoning. Postgrad. Med. J. 2022, 98, 70–71.

[12]

Erbasar, G. N. H.; Kaplan, V.; Cigerim, L.; Konarili, F. N.; Sahin, M. Effect of combined boric acid and chlorhexidine mouthwashes on postoperative complications and periodontal healing after impacted third molar surgery: A-double blind randomized study. Clin. Oral Investig. 2023, 27, 3817–3826.

[13]

Rong, G. Y.; Chen, L. J.; Zhu, F.; Tan, E. C.; Cheng, Y. Y. Polycatechols with robust efficiency in cytosolic peptide delivery via catechol-boronate chemistry. Nano Lett. 2022, 22, 6245–6253.

[14]

Stubelius, A.; Lee, S.; Almutairi, A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc. Chem. Res. 2019, 52, 3108–3119.

[15]

Zhang, Y. C.; Kang, H. G.; Xu, H. Z.; Luo, H. H.; Suzuki, M.; Lan, Q.; Chen, X.; Komatsu, N.; Zhao, L. Tumor eradication by boron neutron capture therapy with 10B-enriched hexagonal boron nitride nanoparticles grafted with poly(glycerol). Adv. Mater. 2023, 35, 2301479.

[16]

Yang, W.; Barth, R. F.; Wu, G.; Tjarks, W.; Binns, P.; Riley, K. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl. Radiat. Isot. 2009, 67, S328–S331.

[17]

Wang, Z. J.; Chen, Z. T.; Zhang, Z. Z.; Li, J. C.; Chen, K.; Liang, H. J.; Lv, L. W.; Chang, Y. N.; Liu, S.; Yang, W. J. et al. Multifunctional high boron content MOFs nano-co-crystals for precise boron neutron capture therapy for brain glioma in situ. Nano Today 2022, 45, 101558.

[18]

Zhang, J. Y.; Jiang, H. C.; Zhang, H. Y. In situ administration of cytokine combinations induces tumor regression in mice. Ebiomedicine 2018, 37, 38–46

[19]

Pan, H. Y.; Zou, Q.; Wang, T. T.; Li, D.; Sun, S. K. Minimalist O2 generator formed by in situ KMnO4 oxidation for tumor cascade therapy. Biomaterials 2022, 287, 121596.

[20]

Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D. H. Device-assisted transdermal drug delivery. Adv. Drug Delivery Rev. 2018, 127, 35–45.

[21]

Jiang, T. Y.; Xu, G.; Chen, G. J.; Zheng, Y.; He, B. F.; Gu, Z. Progress in transdermal drug delivery systems for cancer therapy. Nano Res. 2020, 13, 1810–1824.

[22]

Karavasili, C.; Eleftheriadis, G. K.; Gioumouxouzis, C.; Andriotis, E. G.; Fatouros, D. G. Mucosal drug delivery and 3D printing technologies: A focus on special patient populations. Adv. Drug Delivery Rev. 2021, 176, 113858.

[23]

Zhang, Y. G.; Li, J. P.; Habibovic, P. Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioact. Mater. 2022, 15, 372–381.

[24]

Li, S. K.; Zhang, W. J.; Xing, R. R.; Yuan, C. Q.; Xue, H. D.; Yan, X. H. Supramolecular nanofibrils formed by coassembly of clinically approved drugs for tumor photothermal immunotherapy. Adv. Mater. 2021, 33, 2100595.

[25]

Chen, L. H.; Doyle, P. S. Design and use of a thermogelling methylcellulose nanoemulsion to formulate nanocrystalline oral dosage forms. Adv. Mater. 2021, 33, 2008618.

[26]

Thomas, B.; Raj, M. C.; Athira, K. B.; Rubiyah, M. H.; Joy, J.; Moores, A.; Drisko, G. L.; Sanchez, C. Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 2018, 118, 11575–11625.

[27]

Wang, L.; Ma, J. Y.; Guo, T.; Zhang, F. H.; Dong, A. M.; Zhang, S. Q.; Liu, Y. J.; Yuan, H. P.; Leng, J. S. Control of surface wrinkles on shape memory PLA/PPDO micro-nanofibers and their applications in drug release and anti-scarring. Adv. Fiber Mater. 2023, 5, 632–649.

[28]

Zhang, B. L.; Gao, Y.; Yang, R.; Ouyang, Z. J.; Yu, H. W.; Wang, H.; Shi, X. Y.; Shen, M. W. Tumor-anchoring drug-loaded fibrous microspheres for MR imaging-guided local chemotherapy and metastasis inhibition. Adv. Fiber Mater. 2022, 4, 807–819.

[29]

Li, S.; Zhang, J.; Ju, D. D.; Li, X.; Zhang, J. C.; Yan, X.; Zhang, H. D.; Song, F.; Long, Y. Z. Flexible inorganic composite nanofibers with carboxyl modification for controllable drug delivery and enhanced optical monitoring functionality. Chem. Eng. J. 2018, 350, 645–652.

[30]

Cui, J. J.; Yu, X. G.; Yu, B.; Yang, X. Y.; Fu, Z. Y.; Wan, J. Y.; Zhu, M.; Wang, X. D.; Lin, K. L. Coaxially fabricated dual-drug loading electrospinning fibrous mat with programmed releasing behavior to boost vascularized bone regeneration. Adv. Healthc. Mater. 2022, 11, 2200571.

[31]

Liu, W.; Zhai, X. X.; Zhao, X.; Cai, Y. J.; Zhang, X. M.; Xu, K.; Weng, J.; Li, J. S.; Chen, X. Y. Multifunctional double-layer and dual drug-loaded microneedle patch promotes diabetic wound healing. Adv. Healthc. Mater. 2023, 12, 2300297.

[32]

Qi, Y. X.; Jing, S. W.; He, S. S.; Xiong, H. J.; Yang, G. H.; Huang, Y. B.; Jin, N. Y. The associated killing of hepatoma cells using multilayer drug-loaded mats combined with fast neutron therapy. Nano Res. 2021, 14, 778–787.

[33]

Jing, S. W.; Guo, H. H.; Qi, Y. X.; Yang, G. F.; Huang, Y. B. A portable fast neutron irradiation system for tumor therapy. Appl. Radiat. Isot. 2020, 160, 109138.

[34]

Behera, A.; Padhi, S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: A review. Environ. Chem. Lett. 2020, 18, 1557–1567.

[35]

Hui, Y.; Wibowo, D.; Liu, Y.; Ran, R.; Wang, H. F.; Seth, A.; Middelberg, A. P. J.; Zhao, C. X. Understanding the effects of nanocapsular mechanical property on passive and active tumor targeting. ACS Nano 2018, 12, 2846–2857.

[36]

Goddard, Z. R.; Marín, M. J.; Russell, D. A.; Searcey, M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc. Rev. 2020, 49, 8774–8789.

[37]

Dilliard, S. A.; Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023, 8, 282–300.

[38]

Kong, J. L.; Zou, R.; Law, G. L.; Wang, Y. Biomimetic multifunctional persistent luminescence nanoprobes for long-term near-infrared imaging and therapy of cerebral and cerebellar gliomas. Sci. Adv. 2022, 8, eabm7077.

[39]

Liu, Y. L.; Guo, Y. H.; Song, X. Q.; Hu, M. X.; Zhao, S. T. A method for analyzing programmed cell death in xylem development by flow cytometry. Front. Plant Sci. 2023, 14, 1196618.

[40]

Chen, B. L.; Yan, Y.; Yang, Y.; Cao, G.; Wang, X.; Wang, Y. Q.; Wan, F. J.; Yin, Q. Q.; Wang, Z. H.; Li, Y. F. et al. A pyroptosis nanotuner for cancer therapy. Nat. Nanotechnol. 2022, 17, 788–798.

[41]

Kondo, N. DNA damage and biological responses induced by boron neutron capture therapy (BNCT). Enzymes 2022, 51, 65–78.

[42]

Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Bankoglu, E. E.; Bonassi, S.; Boutet-Robinet, E.; Brunborg, G. et al. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc. 2023, 18, 929–989.

[43]

Li, Z. M.; Li, Y. L.; Tang, M.; Peng, B.; Lu, X. P.; Yang, Q. Y.; Zhu, Q.; Hou, T. Y.; Li, M. T.; Liu, C. H. et al. Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair. Cell Res. 2018, 28, 756–770.

[44]

Yap, T. A.; Fontana, E.; Lee, E. K.; Spigel, D. R.; Højgaard, M.; Lheureux, S.; Mettu, N. B.; Carneiro, B. A.; Carter, L.; Plummer, R. et al. Camonsertib in DNA damage response-deficient advanced solid tumors: Phase 1 trial results. Nat. Med. 2023, 29, 1400–1411.

[45]

Lee, J. H.; Paull, T. T. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 796–814.

[46]

Chen, R. P.; Buchmann, S.; Kroth, A.; Arias-Loza, A. P.; Kohlhaas, M.; Wagner, N.; Grüner, G.; Nickel, A.; Cirnu, A.; Williams, T. et al. Mechanistic insights of the LEMD2 p.L13R mutation and its role in cardiomyopathy. Circ. Res. 2023, 132, e43–e58.

[47]

Buehl, C. J.; Goff, N. J.; Hardwick, S. W.; Gellert, M.; Blundell, T. L.; Yang, W.; Chaplin, A. K.; Meek, K. Two distinct long-range synaptic complexes promote different aspects of end processing prior to repair of DNA breaks by non-homologous end joining. Mol. Cell 2023, 83, 698–714.e4.

[48]

Chen, Y.; Zhao, Y.; Yang, X. J.; Ren, X. Y.; Huang, S. Y.; Gong, S.; Tan, X. R.; Li, J. Y.; He, S. W.; Li, Y. Q. et al. SP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat. Commun. 2022, 13, 501

[49]

Kim, H. J.; Cho, H. B.; Lee, S.; Lyu, J.; Kim, H. R.; Lee, S.; Park, J. I.; Park, K. H. Strategies for accelerating osteogenesis through nanoparticle-based DNA/mitochondrial damage repair. Theranostics 2022, 12, 6409–6421.

[50]

Xie, Z. R.; Bailey, A.; Kuleshov, M. V.; Clarke, D. J. B.; Evangelista, J. E.; Jenkins, S. L.; Lachmann, A.; Wojciechowicz, M. L.; Kropiwnicki, E.; Jagodnik, K. M. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 2021, 1, e90.

[51]

Fiskus, W.; Wang, Y. C.; Sreekumar, A.; Buckley, K. M.; Shi, H. D.; Jillella, A.; Ustun, C.; Rao, R.; Fernandez, P.; Chen, J. G. et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009, 114, 2733–2743.

[52]

Avan, A.; Crea, F.; Paolicchi, E.; Funel, N.; Galvani, E.; Marquez, V. E.; Honeywell, R. J.; Danesi, R.; Peters, G. J.; Giovannetti, E. Molecular mechanisms involved in the synergistic interaction of the EZH2 inhibitor 3-deazaneplanocin A with gemcitabine in pancreatic cancer cells. Mol. Cancer Ther. 2012, 11, 1735–1746.

[53]

Kim, K. H.; Roberts, C. W. M. Targeting EZH2 in cancer. Nat. Med. 2016, 22, 128–134.

[54]

Zhai, Y.; Lin, P.; Feng, Z.; Lu, H. Y.; Han, Q.; Chen, J.; Zhang, Y.; He, Q.; Nan, G.; Luo, X. et al. TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes. Autophagy 2018, 14, 1629–1643

[55]

Hong, W. Q.; Yang, J. Y.; Bi, Z. F.; He, C.; Lei, H.; Yu, W. H.; Yang, Y.; Fan, C. F.; Lu, S. Y.; Peng, X. Z. et al. A mouse model for SARS-CoV-2-induced acute respiratory distress syndrome. Signal Transduct. Target. Ther. 2021, 6, 1.

[56]

Shi, Y. Y.; Wang, X. Y.; Wang, J. N.; Wang, X. Y.; Zhou, H. Y.; Zhang, L. N. The dual roles of A20 in cancer. Cancer Lett. 2021, 511, 26–35.

[57]

Hu, Y. W.; Xu, Y. T.; Mintz, R. L.; Luo, X.; Fang, Y. Q.; Lao, Y. H.; Chan, H. F.; Li, K.; Lv, S. X.; Chen, G. J. et al. Self-intensified synergy of a versatile biomimetic nanozyme and doxorubicin on electrospun fibers to inhibit postsurgical tumor recurrence and metastasis. Biomaterials 2023, 293, 121942.

[58]

Li, J. Y.; Li, J. J.; Yao, Y. Z.; Yong, T. Y.; Bie, N. N.; Wei, Z. H.; Li, X.; Li, S. Y.; Qin, J. Q.; Jia, H. B. et al. Biodegradable electrospun nanofibrous platform integrating antiplatelet therapy-chemotherapy for preventing postoperative tumor recurrence and metastasis. Theranostics 2022, 12, 3503–3517.

[59]

Yang, Z. H.; Chen, L. H.; Liu, J.; Zhuang, H.; Lin, W.; Li, C. L.; Zhao, X. J. Short peptide nanofiber biomaterials ameliorate local hemostatic capacity of surgical materials and intraoperative hemostatic applications in clinics. Adv. Mater. 2023, 35, 2301849.

[60]

Dong, Y. P.; Zheng, Y. Q.; Zhang, K. Y.; Yao, Y. M.; Wang, L. H.; Li, X. R.; Yu, J. Y.; Ding, B. Electrospun nanofibrous materials for wound healing. Adv. Fiber Mater. 2020, 2, 212–227.

[61]

Fu, L. W.; Feng, Q.; Chen, Y. J.; Fu, J. Z.; Zhou, X. J.; He, C. L. Nanofibers for the immunoregulation in biomedical applications. Adv. Fiber Mater. 2022, 4, 1334–1356.

[62]

Yang, J.; Xu, L.; Ding, Y. N.; Liu, C.; Wang, B. C.; Yu, Y. C.; Hui, C.; Ramakrishna, S.; Zhang, J.; Long, Y. Z. NIR-II-Triggered composite nanofibers to simultaneously achieve intracranial hemostasis, killing superbug and residual cancer cells in brain tumor resection surgery. Adv. Fiber Mater. 2023, 5, 209–222.

[63]

Zhang, S. Q.; Ye, J. W.; Sun, Y.; Kang, J.; Liu, J. H.; Wang, Y.; Li, Y. C.; Zhang, L. H.; Ning, G. L. Electrospun fibrous mat based on silver(I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chem. Eng. J. 2020, 390, 124523.

[64]

Zhou, N.; Gao, Y. F.; Huo, Y.; Zhang, K.; Zhu, J.; Chen, M. Y.; Zhu, L.; Dong, Y. H.; Gao, H. G.; Kim, I. S. et al. Biodegradable micro-nanofiber medical tape with antibacterial and unidirectional moisture permeability. Chem. Eng. J. 2023, 474, 145793.

[65]

Huang, D. Q.; Singal, A. G.; Kono, Y.; Tan, D. J. H.; El-Serag, H. B.; Loomba, R. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab. 2022, 34, 969–977.e2.

[66]

Qiu, Z. X.; Li, H.; Zhang, Z. T.; Zhu, Z. F.; He, S.; Wang, X. J.; Wang, P. C.; Qin, J. J.; Zhuang, L. P.; Wang, W. et al. A pharmacogenomic landscape in human liver cancers. Cancer Cell 2019, 36, 179–193.e11.

[67]

Feng, S. N.; Ni, P. Y.; Gong, Y.; Geng, B. J.; Li, H.; Miao, C. L.; Fan, R. Y.; Galstyan, L.; Pan, D. Y.; Chen, F. X. et al. Synergistic anti-tumor therapy by a homotypic cell membrane-cloaked biomimetic nanocarrier with exceptionally potent activity against hepatic carcinoma. Nano Res. 2022, 15, 8255–8269.

[68]

Li, F. F.; Zhao, Y.; Nie, G. J. Nanotechnology-based combinational strategies toward the regulation of myofibroblasts and diseased microenvironment in liver fibrosis and hepatic carcinoma. Nano Res. 2023, 16, 13042–13055.

[69]

Pichardo, R.; Abu Omar, Y.; Wang, D. Inpatient complications of immunotherapy-associated colitis in solid malignancies: Real-world data analysis. J. Clin. Oncol. 2022, 40, 2657.

[70]

Perera, N. D.; Jazieh, K.; Chen, S. Z.; Wampfler, J. A.; Reungwetwattana, T.; Johnson, T. F.; Roden, A.; Yang, P.; Wigle, D. A.; Molina, J. R. Multifocal bronchial neuroendocrine tumor (bNET): A new clinical entity. J. Clin. Oncol. 2022, 40, 9135.

Nano Research
Pages 7479-7492
Cite this article:
Huang W, Yang Y, Pan Y, et al. Enhanced boron neutron capture therapy (BNCT) through controlled drug release via boron-loaded nanofiber mats. Nano Research, 2024, 17(8): 7479-7492. https://doi.org/10.1007/s12274-024-6721-3
Topics:

567

Views

0

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 13 March 2024
Revised: 14 April 2024
Accepted: 25 April 2024
Published: 26 June 2024
© Tsinghua University Press 2024
Return