AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Experimental determination of the Young’s modulus of individual single-walled carbon nanotubes with single chirality

Jianlin Sun1,2Xiao Zhang1,2,3,4( )Yanchun Wang1,4Mingming Li1,2Xiaojun Wei1,2,3,4Huaping Liu1,2,3,4Weiya Zhou1,2,3,4( )
Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
Show Author Information

Graphical Abstract

A new method for measuring Young’s modulus of micron-scale partially suspended carbon nanotubes (CNTs) has been developed by applying pressure to the central point of an individual CNT suspended over a groove with an atomic force microscope probe. It is helpful to further investigate the correlation between mechanical properties and structures of single-walled CNTs with single chirality.

Abstract

One-dimensional carbon nanotube (CNT) exhibits excellent mechanical properties and is considered to be an ideal candidate material for the space elevator. However, subtle changes in its chirality strongly affect its physical and chemical properties, including mechanical properties (such as Young's modulus, YM). Theoretical studies reveal that the YMs of perfect single-walled carbon nanotubes (SWCNTs) are in the order of TPa and related to their structures. Nevertheless, due to the lack of SWCNTs samples with well-defined structures and the difficulties in mechanical tests on individual SWCNTs, the theoretical correlations between YM and structure of SWCNTs have not been verified and are still in debate, which directly influences the practical utilization of the excellent mechanical properties of SWCNTs. In this work, we have developed an experimental method to measure the YM of an individual micrometer-scale suspended CNT by atomic force microscopy. A distinct regularity is found between the YM and chirality (i.e., chiral angle and diameter) of SWCNT in the experiment for the first time. By comparing the YMs of SWCNTs with similar diameters and different chiral angles, it manifests that the SWCNT with a near zigzag configuration has a larger YM. This finding suggests that the effect of SWCNT’s structures on the YMs cannot be ignored. The developed method of measuring YMs of SWCNTs will be valuable for further experimental research on the inherent physical and chemical properties of SWCNTs.

Electronic Supplementary Material

Download File(s)
6722_ESM.pdf (694.3 KB)

References

[1]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[2]

Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

[3]

Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297–1300.

[4]

Gupta, S.; Dharamvir, K.; Jindal, V. K. Elastic moduli of single-walled carbon nanotubes and their ropes. Phys. Rev. B 2005, 72, 165428.

[5]

Nixon, A.; Knapman, J.; Wright, D. H. Space elevator tether materials: An overview of the current candidates. Acta Astronaut. 2023, 210, 483–487.

[6]

Chang, T.; Gao, H. J. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 2003, 51, 1059–1074.

[7]

Shen, L. X.; Li, J. Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 2004, 69, 045414.

[8]

Mashapa, M. G.; Ray, S. S. Molecular dynamics simulation studies of structural and mechanical properties of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2010, 10, 8083–8087.

[9]

Bian, L. C.; Yang, J. Q.; Cheng, Y. Molecular structure based study on the elastic properties of carbon nanotubes in a thermal environment. J. Mol. Struct. 2022, 1262, 133013.

[10]

Mylvaganam, K.; Zhang, L. C. Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon 2004, 42, 2025–2032.

[11]

Agrawal, P. M.; Sudalayandi, B. S.; Raff, L. M.; Komanduri, R. Molecular dynamics (MD) simulations of the dependence of C–C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT). Comput. Mater. Sci. 2008, 41, 450–456.

[12]

Weng, M.-H.; Ju, S.-P.; Wu, W.-S. The collective motion of carbon atoms in a (10,10) single wall carbon nanotube under axial tensile strain. J. Appl. Phys. 2009, 106, 063504.

[13]

Ju, S.-P.; Weng, M.-H.; Wu, W.-S. MD investigation of the collective carbon atom behavior of a (17,0) zigzag single wall carbon nanotube under axial tensile strain. J. Nanopart. Res. 2010, 12, 2979–2987.

[14]

Cai, J.; Wang, Y. D.; Wang, C. Y. Effect of ending surface on energy and Young's modulus of single-walled carbon nanotubes studied using linear scaling quantum mechanical method. Phys. B: Condens. Matter 2009, 404, 3930–3934.

[15]

Bian, L. C.; Li, H.; Cheng, Y. Temperature and size-dependent modeling for predicting mechanical properties of carbon nanotubes. Appl. Math. Modell. 2021, 98, 518–536.

[16]

Sakharova, N. A.; Pereira, A. F. G.; Antunes, J. M.; Brett, C. M. A.; Fernandes, J. V. Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study. Compos. Part B: Eng. 2015, 75, 73–85.

[17]

Tserpes, K. I.; Papanikos, P. Finite element modeling of single-walled carbon nanotubes. Compos. Part B: Eng. 2005, 36, 468–477.

[18]

Popov, V. N.; Van Doren, V. E.; Balkanski, M. Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 2000, 61, 3078–3084.

[19]

Veedu, V. P.; Askari, D.; Ghasemi-Nejhad, M. N. Chirality dependence of carbon single-walled nanotube material properties: Axial Young's modulus. J. Nanosci. Nanotechnol. 2006, 6, 2159–2166.

[20]

Čanađija, M. Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies. Carbon 2021, 184, 891–901.

[21]

Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.

[22]

Pan, Z. W.; Xie, S. S.; Lu, L.; Chang, B. H.; Sun, L. F.; Zhou, W. Y.; Wang, G.; Zhang, D. L. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 1999, 74, 3152–3154.

[23]

Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

[24]

Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

[25]

Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

[26]

Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040.

[27]

Shen, B. Y.; Zhu, Z. X.; Zhang, J. Y.; Xie, H. H.; Bai, Y. X.; Wei, F. Single-carbon-nanotube manipulations and devices based on macroscale anthracene flakes. Adv. Mater. 2018, 30, 1705844.

[28]

Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555.

[29]

Wu, Y.; Huang, M. Y.; Wang, F.; Huang, X. M. H.; Rosenblatt, S.; Huang, L. M.; Yan, H. G.; O'Brien, S. P.; Hone, J.; Heinz, T. F. Determination of the Young's modulus of structurally defined carbon nanotubes. Nano Lett. 2008, 8, 4158–4161.

[30]

Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J. Young's modulus of single-walled nanotubes. Phys. Rev. B 1998, 58, 14013–14019.

[31]

Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173–178.

[32]

Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

[33]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[34]

Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

[35]

Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lui, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.

[36]

Salvetat, J. P.; Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stöckli, T.; Burnham, N. A.; Forró, L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 1999, 82, 944–947.

[37]

Huang, S. M.; Woodson, M.; Smalley, R.; Liu, J. Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process. Nano Lett. 2004, 4, 1025–1028.

[38]

Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

[39]

Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073–2079.

[40]

Yao, Y. G.; Dai, X. C.; Liu, R.; Zhang, J.; Liu, Z. F. Tuning the diameter of single-walled carbon nanotubes by temperature-mediated chemical vapor deposition. J. Phys. Chem. C 2009, 113, 13051–13059.

[41]

Peng, B. H.; Yao, Y. G.; Zhang, J. Effect of the Reynolds and Richardson numbers on the growth of well-aligned ultra long single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 12960–12965.

[42]

Arenal, R.; Löthman, P.; Picher, M.; Than, T.; Paillet, M.; Jourdain, V. Direct evidence of atomic structure conservation along ultra-long carbon nanotubes. J. Phys. Chem. C 2012, 116, 14103–14107.

[43]

Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. Acs Nano 2013, 7, 6156–6161.

[44]

Zhang, X.; Song, L.; Cai, L.; Tian, X. Z.; Zhang, Q.; Qi, X. Y.; Zhou, W. B.; Zhang, N.; Yang, F.; Fan, Q. X. et al. Optical visualization and polarized light absorption of the single-wall carbon nanotube to verify intrinsic thermal applications. Light: Sci. Appl. 2015, 4, e318.

[45]

Yang, F.; Ji, Y. L.; Zhang, X.; Fan, Q. X.; Zhang, N.; Gu, X. G.; Xiao, Z. J.; Zhang, Q.; Wang, Y. C.; Wu, X. C. et al. Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering. Chin. Phys. B 2017, 26, 078801.

[46]

Liu, K. H.; Wang, W. L.; Wu, M. H.; Xiao, F. J.; Hong, X. P.; Aloni, S.; Bai, X. D.; Wang, E. G.; Wang, F. Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes. Phys. Rev. B 2011, 83, 113404.

[47]

Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotechnol. 2012, 7, 325–329.

[48]

Nugraha, A. R. T.; Saito, R.;Sato, K.; Araujo, P. T.; Jorio, A.; Dresselhaus, M. S. Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. Appl. Phys. Lett. 2010, 97, 091905.

Nano Research
Pages 7522-7532
Cite this article:
Sun J, Zhang X, Wang Y, et al. Experimental determination of the Young’s modulus of individual single-walled carbon nanotubes with single chirality. Nano Research, 2024, 17(8): 7522-7532. https://doi.org/10.1007/s12274-024-6722-2
Topics:

689

Views

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 March 2024
Revised: 25 April 2024
Accepted: 26 April 2024
Published: 04 June 2024
© Tsinghua University Press 2024
Return